ELECTRONIC SUPPLEMENTARY INFORMATION

Improving the thermoelectric properties of half-Heusler TiNiSn through inclusion of a secondary full-Heusler phase: Microwave preparation and Spark Plasma Sintering of $TiNi_{1+x}Sn$

Christina S. Birkel,^{*ab*} Jason E. Douglas,^{*bc*} Bethany R. Lettiere,^{*b*} Gareth Seward,^{*d*} Nisha Verma,^{*c*} Yichi Zhang,^{*a*} Tresa M. Pollock,^{*bc*} Ram Seshadri,^{*abc*} and Galen D. Stucky^{**ac*}

Analytical conditions of microprobe analysis

Ti K α , Ni K α , and Sn L α X-ray intensities were measured using LPET, LLIF, and LPET analyzing crystals. X-ray intensity maps were collected using 15 keV accelerating voltage with 100 nA of beam current. An area of 125×125 µm was traversed using continuous stage translation to create a 256×256 pixel map with a dwell time of 125 ms per pixel. Quantitative analysis was conducted at 15 keV accelerating voltage and 10 nA beam current. Ti K α , Ni K α , and Sn L α intensities were measured on-peak for 20 seconds and 10 seconds off-peak either side of the peak to create a linear background interpolation.

Figure S1. SEM images of as-prepared TiNiSn, TiNi1.06Sn, and TiNi1.15Sn

^{*}Fax: 805-893-4120; Tel: 805-893-4872; E-mail: stucky@chem.ucsb.edu

^a Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510 USA

^b Materials Research Laboratory, University of California, Santa Barbara, California 93106-5121 USA

^c Materials Department, University of California, Santa Barbara, California 93106-5050 USA

^d Department of Earth Sciences, University of California, Santa Barbara, California 93106-9630 USA

Figure S2. Microprobe images of $TiNi_{1+x}Sn$ with x = 0, 0.04, 0.1, and 0.15.