Supporting Information

Understanding the effects of surface/bulk defects on the photocatalytic activity of TiO₂: Anatase versus Rutile

Junqing Yan¹, Guangjun Wu¹, Naijia Guan¹, Landong Li^{*,1}, Zhuoxin Li², Xingzhong Cao²

¹ Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, P.R. China

² Key Laboratory of Nuclear Analysis Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P.R. China

Figure S1 Experiment setup for the photocatalytic reforming of methanol

Figure S2 Structural modes of anatase TiO_2 {101} and {001} facets, and rutile {110} and {100} facets

For the anatase {101} facets, the bonding modes on the surface are mainly saturated 6c-Ti and 3c-O modes, and unsaturated 5c-Ti and 2c-O. For the anatase {001} facets, the bonding modes on the surface are mainly unsaturated 5c-Ti and 2c-O. For rutile {110} facets, the bonding modes on the surface are mainly saturated 6c-Ti and 3c-O modes, and unsaturated 5c-Ti and 2c-O. For rutile {100} facets, are mainly unsaturated 5c-Ti and 2c-O. The 6c-Ti and 3c-O are easy to exhibit the symmetric stretching vibration, and the 2c-O and 5c-Ti tend to exhibit the symmetric bending vibration and anti-symmetric bending vibration. In Raman spectra, the E_g mode is mainly caused by the symmetric stretching vibration of O-Ti-O, and the A_{1g} mode is caused by anti-symmetric bending vibration of O-Ti-O.

Sample	Raman intensity			Ratio		
	$E_g / 140 \text{ cm}^{-1}$	$B_{1g}/395 \text{ cm}^{-1}$	$A_{1g}/515 \text{ cm}^{-1}$	A_{1g}/Eg	B_{1g} / Eg	A_{1g}/B_{1g}
anatase	2023	320	321	0.16	0.16	1.00
A-400	2116	283	287	0.14	0.13	1.01
A-500	5420	703	712	0.13	0.13	1.00
A-600	10870	1356	1370	0.13	0.12	1.01
A-700	12449	1560	1563	0.13	0.13	1.00

Table S1 Intensity and the ratio between different Raman vibrational modes in anatase TiO₂

Table S2 Intensity and the ratio between different Raman vibrational modes in rutile TiO_2

Sample	Raman in	Ratio		
	Multi-proton process / 230 cm ⁻¹	$E_g/445 \text{ cm}^{-1}$	$A_{1g} / 610 \text{ cm}^{-1}$	A_{1g}/Eg
rutile	1147	2688	2347	0.87
R-400	1276	2722	3125	1.15
R-500	2350	5034	5766	1.15
R-600	3116	6680	7744	1.16
R-700	3294	7358	8560	1.16

Figure S3 XPS of Ti 2p region of anatase and rutile TiO_2 calcined at different temperatures

Figure S4 XPS survey spectra of anatase and rutile TiO₂ calcined at different temperatures