Supporting Information

Title: Reliable Contact Fabrication on Nanostructured Bi₂Te₃-Based Alloys for High Performance Flat-Panel Solar Thermoelectric Generators

Shien-Ping Feng^{*}, Ya-Huei Chang, Jian Yang, Bed Poudel, Bo Yu, Zhifeng Ren^{*} and Gang Chen^{*}

Based on the ratio of total STEG resistance at operating temperature to initial STEG resistance at room temperature, we assume that the ratio (χ) increases because of the increase of contact resistance, which can be calculated from,

$$\chi = \frac{R_{\rm TE-x} + 2R_{\rm cx}}{R_{\rm TE-i} + 2R_{\rm ci}} \tag{S1}$$

where R_{TE-i} and R_{ci} are the initial resistance of thermoelectric leg and the initial contact resistance respectively, R_{TE-x} and R_{cx} are the resistance of thermoelectric leg and contact resistance under operating temperature. We make the following assumptions in the modeling:

- (1) Based on the Table 1, the initial contact resistance is around 1% of the resistance of thermoelectric material. $R_{ci} / R_{TE-i} = 1\%$.
- (2) The resistance of Bi₂Te₃-based thermoelectric alloys at operating temperature (ΔT =200 °C) would increase 1.5 times compared with the initial resistance at room temperature. R_{TE-x} / R_{TE-i} = 1.5.
- (3) The average resistivity of nanostructured Bi₂Te₃-based alloys is 1.1 x $10^{-3} \Omega$ -cm. The dimension of thermoelectric leg is 1.35 mm × 1.35 mm × 1.65 mm. R_{TE-i} = 0.01 Ω .

We further assume that the ratio of contact resistance to the resistance of thermoelectric leg is $R_{cx} / R_{TE-i} = \alpha$, so that Eq. (S1) can be rewritten as,

$$\chi = \frac{1.5 + 2\alpha}{1 + 0.02} \tag{S2}$$

Based on the data of χ , the α and R_{cx} can be calculated as a function of time. The specific contact resistance (Ω -cm²) can be estimated by R_{cx} timing contact area (1.35mm x 1.35mm). For example, if $\alpha = 5\%$, the specific contact resistance of 9 x 10⁻⁶ Ω -cm² can be obtained.