Electronic Supplementary Information

Significant performance improvement in dye-sensitized solar cells employing the cobalt(III/II) tris-bipyridyl redox mediator by co-grafting alkyl phosphonic acids with a ruthenium sensitizer

Yeru Liu, James Robert Jennings, Xingzhu Wang and Qing Wang*

Department of Materials Science and Engineering, Faculty of Engineering, NUSNNI-NanoCore, National University of Singapore, Singapore 117574. Fax: 65 6776 3604; Tel: 65 6516 7118; E-mail: msewq@nus.edu.sg

Transient absorbance (Δ OD) decays following pulsed laser excitation for TiO₂ layers sensitized by Z907 dye (with or without coadsorbents) were recorded at $\lambda = 680$ nm, where the main contribution to Δ OD is from the oxidized dye (Fig. S1).¹ The absorbance decays were fitted with a stretched exponential function

$$\Delta OD = \Delta OD_0 \exp\left[-\left(\frac{t}{\tau_{\rm KWW}}\right)^{\alpha}\right] \tag{S1}$$

where ΔOD_0 is the absorbance change at t = 0, τ_{KWW} is a characteristic lifetime and α is the stretching exponent. Weighted-average lifetimes (τ_{obs}) appropriate for calculating the steady-state dye regeneration yield² were derived using

$$\tau_{\rm obs} = \frac{\tau_{\rm KWW}}{\alpha} \Gamma\left(\frac{1}{\alpha}\right) \tag{S2}$$

where Γ () is the gamma function. Dye regeneration yields (η_{reg}) were then estimated using

$$\eta_{\rm reg} = 1 - \frac{\tau_{\rm obs}}{\tau_{\rm obs,0}} \tag{S3}$$

where τ_{obs} and $\tau_{obs,0}$ are the weighted-average lifetimes in the presence or absence of $[Co(bpy)_3]^{2+}$ (i.e. the electron donor which regenerates the oxidized dye), respectively. The results of this analysis are summarized in Table S1.

t/s

Fig. S1 Transient absorbance (Δ OD) decays at 680 nm following pulsed laser excitation ($\lambda = 532$ nm, pulse duration ~5 ns, pulse fluence ~10 µJ cm⁻²) for a) Pure Z907, b) OPA:Z907 1:20 and c) DPA:Z907 1:40 in the presence (left trace) or absence (right trace) of $[Co(bpy)_3]^{2+}$. Red and blue solid lines are fits of eq. S1 to the data.

Table S1 Transient absorbance decay constants and regeneration efficiencies for TiO_2 films sensitized by Z907 with or without coadsorbents, calculated using eq. S2 and S3.

	$ au_{ m obs}$ / $\mu m s$	$ au_{ m obs,0}$ / $\mu m s$	$\eta_{ m reg}$ / %
Pure Z907	17.6±0.8	2420±21.2	99.3±0.03
Opt. OPA&Z907	41.4±1.7	2982±37.1	98.6±0.06
Opt. DPA&Z907	24.3 ± 1.1	3547±33.0	99.3±0.03

References:

(1) Zhang, Z. P.; Ito, S.; Moser, J. E.; Zakeeruddin, S. M.; Grätzel, M. *ChemPhysChem* **2009**, *10*, 1834-1838

(2) Anderson, A. Y.; Barnes, P. R. F.; Durrant, J. R.; O'Regan, B. C. J. Phys. Chem. C **2011**, *115*, 2439.