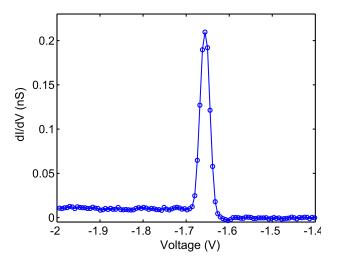
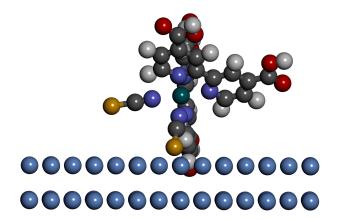

Switching and charging of a ruthenium dye on Ag(111) – Supplemental material


Nadine Hauptmann, a Christian Hamann, a Hao Tang, b and Richard Berndt *a


Fig. S1 Differential conductance dI/dV vs. voltage on an unswitched N3 (Figs. 2(a) and (b)). The data was recorded at the center of the molecules (green) and at two off-center positions (red and blue). A third vibronic peak can be observed (arrow).

Calculation of E_0 and α

The energy level E_0 and the fraction α are calculated from the onsets of P⁻ at V⁻ and P⁺ at V⁺ as: $E_0/e = -V^-\left(\frac{V^+}{V^+-V^-}\right)$ and $\alpha = \frac{V^-}{V^+-V^-}$. With the values from Fig. 3(a) $(V^- = -2.2 \text{ V})$ and $V^+ = 0.47 \text{ V}$ $E_0 = 0.39 \text{ V}$ and $\Omega = 0.18$ are obtained.

Fig. S2 Differential conductance dI/dV vs. voltage of the molecule on which the dI/dV map in Fig. 3(a) was performed. For this molecule we find $E_0 \sim 240 \,\mathrm{mV}$ from the measured onsets $V^- = -1.62 \,\mathrm{V}$ and $V^+ = 0.28 \,\mathrm{V}$). The tip-molecule distance is defined by a current of 51 pA and a voltage of $-2 \,\mathrm{V}$.

Fig. S3 Suggested adsorption geometry of N3 at a single step after the switching as viewed from the upper terraces. The step is parallel to the plane of the paper.

^a Institut f\u00fcr Experimentelle und Angewandte Physik, Christian-Albrechts-Universit\u00e4t zu Kiel, 24098 Kiel, Germany; hauptmann@physik.uni-kiel.de

^b CEMES/CNRS 29, rue Jeanne Marvig, B.P. 94347, 31055 Toulouse Cedex, France; Université de Toulouse, UPS, 31055 Toulouse, France