Supporting Information

QM/MM investigation on 1,3-dipolar cycloadditions of phthalazinium dicyanomethanide with three different dipolarophiles on water and in solutions

Xin Yang, Ying Xue^{*}

College of Chemistry, Key Lab of Green Chemistry and Technology in Ministry of Education, Sichuan University, Chengdu 610064, People's Republic of China

<i>Table S1.</i> Computed and experimental densities of water-acetonitrile mixture solvents at 25 °C (g.cm ⁻³)3
Figure S1. Illustration of the 0.619-mixture solvent box
<i>Figure S2.</i> Illustration of the 0.9-mixture solvent box
Figure S3. (A) Side and (B) overhead illustration of "on water" 1,3-dipolar cycloadditions with MVK
transition structure from the QM/MM/MC calculations
Figure S4. (A) Side and (B) overhead illustration of "on water" 1,3-dipolar cycloadditions with MAC
transition structure from the QM/MM/MC calculations7
Figure S5. (A) Side and (B) overhead illustration of "on water" 1,3-dipolar cycloadditions with MVK
transition structure from the QM/MM/MC calculations
Figure S6. Solute-solvent energy pair distribution for the transition structure (solid) and reactant (solid) of
the 1,3-dipolar cycloadditions of 1,3-dipolar 1 and MAC at CH3CN, in water, and on water. The ordinate
records the number of solvent molecules that interact with the solutes with their interaction energy on the
abscissa. Units for the ordinate are number of molecules per kcal/mol
Figure S7. Solute-solvent energy pair distribution for the transition structure (solid) and reactant (solid) of
the 1,3-dipolar cycloadditions of 1,3-dipolar 1 and STY at CH3CN, in water, and on water. The ordinate
records the number of solvent molecules that interact with the solutes with their interaction energy on the
abscissa. Units for the ordinate are number of molecules per kcal/mol10
Condensed-phase B3LYP/6-311+G(2d,p) 1,3-dipolar 1 and MVK optimizations in PCM11
Condensed-phase B3LYP/6-311+G(2d,p) 1,3-dipolar 1 and MAC optimizations in PCM12
Condensed-phase B3LYP/6-311+G(2d,p) 1,3-dipolar 1 and STY optimizations in PCM15
Gas-phase B3LYP/6-311+G(2d,p) 1,3-dipolar 1 and MVK optimizations

$X_{ m H_2O}$	ρ (calcd)	ρ (exptl)	ref.
0.619	0.8506	0.8707 ^a	1
0.9	0.9617	0.9847 ^b	2

Table S1. Computed and experimental densities of water-acetonitrile mixture solvents at 25 °C (g.cm⁻³)

^a Based on values at 20 °C , $X_{
m H_2O}=0.957$

References:

(1) J. Chem. Eng. Data 1967, 12, 336-337.

(2) J. Chem. Eng. Data 2008, 53, 578-585.

Figure S1. Illustration of the 0.619-mixture solvent box

Figure S2. Illustration of the 0.9-mixture solvent box

Figure S3. (A) Side and (B) overhead illustration of "on water" 1,3-dipolar cycloadditions with MVK transition structure from the QM/MM/MC calculations.

Figure S4. (A) Side and (B) overhead illustration of "on water" 1,3-dipolar cycloadditions with MAC transition structure from the QM/MM/MC calculations.

Figure S5. (A) Side and (B) overhead illustration of "on water" 1,3-dipolar cycloadditions with MVK transition structure from the QM/MM/MC calculations.

Figure S6. Solute-solvent energy pair distribution for the transition structure (solid) and reactant (solid) of the 1,3-dipolar cycloadditions of 1,3-dipolar 1 and MAC at CH3CN, in water, and on water. The ordinate records the number of solvent molecules that interact with the solutes with their interaction energy on the abscissa. Units for the ordinate are number of molecules per kcal/mol.

Figure S7. Solute-solvent energy pair distribution for the transition structure (solid) and reactant (solid) of the 1,3-dipolar cycloadditions of 1,3-dipolar 1 and STY at CH3CN, in water, and on water. The ordinate records the number of solvent molecules that interact with the solutes with their interaction energy on the abscissa. Units for the ordinate are number of molecules per kcal/mol.

Condensed-phase B3LYP/6-311+G(2d,p) 1,3-dipolar 1 and MVK optimizations in PCM: Water transition structure

	1	2	3
	А	А	А
Frequencies	-353.6722	36.9766	44.5820
Red. masses	10.5159	4.8019	7.4867
Frc consts	0.7750	0.0039	0.0088
IR Inten	400.4743	11.1231	20.1260

Sum of electronic and zero-point Energies=	-872.947542
Sum of electronic and thermal Energies=	-872.930029
Sum of electronic and thermal Enthalpies=	-872.929085
Sum of electronic and thermal Free Energies=	-872.993605

С	0.73341800	-1.70959800	-1.26498900
Ν	-0.52548500	-1.54561400	-1.00714300
Н	0.94322900	-2.27878100	-2.16349600
Ν	-0.84043900	-0.86183400	0.13562200
С	-3.10397100	-1.14383200	-0.66251000
С	-2.70553100	-0.46119500	1.59965200
Ν	-3.89976600	-1.58311900	-1.36922000
Ν	-3.10852600	-0.40140900	2.67644700
С	-1.00851800	2.00452100	0.22666100
Н	-1.03062300	2.41699600	1.22979800
С	0.11626400	2.42088100	-0.56143200
0	1.01136500	3.13610900	-0.07465800
С	-2.20650700	-0.46040300	0.23997400
С	-2.18286100	1.36547600	-0.26048300
Н	-3.12077700	1.66732200	0.19552100
Н	-2.27681400	1.25323300	-1.33548600
С	0.06377800	-0.22388400	0.90626700
Н	-0.28511900	0.19133500	1.83694000
С	1.80478500	-1.20156000	-0.46409100
С	3.15507500	-1.43692500	-0.75394400
С	1.44740500	-0.43463100	0.66910100
С	4.12846800	-0.91441300	0.07600600
Н	3.42362700	-2.02538400	-1.62248400
С	2.44838600	0.09092600	1.50245500
С	3.77372400	-0.15261000	1.20148200
Н	5.17413000	-1.09206800	-0.14032800
Н	2.17496600	0.67827100	2.36936400
Н	4.55059600	0.24786600	1.84024200
С	0.22900700	2.03850700	-2.02843000
Н	-0.37884000	1.18422100	-2.32224600

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2013

Н	-0.07751700	2.89467800	-2.63636600
Н	1.27421200	1.82971600	-2.25845000

CH₃CN transition structure

	1	2	3
	А	А	А
Frequencies	-358.1136	36.3808	47.4716
Red. masses	10.5290	4.8826	7.4787
Frc consts	0.7956	0.0038	0.0099
IR Inten	391.9964	9.2462	19.3566

Sum of electronic and zero-point Energies=	-872.946852
Sum of electronic and thermal Energies=	-872.929355
Sum of electronic and thermal Enthalpies=	-872.928411
Sum of electronic and thermal Free Energies=	-872.992826

С	0.72920400	-1.70993100	-1.26442700
Ν	-0.52944500	-1.54528600	-1.00658000
Н	0.93857400	-2.27914900	-2.16305600
Ν	-0.84427400	-0.86191800	0.13662300
С	-3.10776400	-1.13581200	-0.66490200
С	-2.70915400	-0.45837100	1.59948900
Ν	-3.90425000	-1.57016100	-1.37389300
Ν	-3.11201500	-0.39766900	2.67631500
С	-0.99699300	2.00100100	0.22953800
Н	-1.01422100	2.41342600	1.23274800
С	0.12794500	2.41436700	-0.56211600
0	1.02827000	3.12169900	-0.07586400
С	-2.20906200	-0.45871700	0.24053900
С	-2.17702200	1.37310500	-0.25650400
Н	-3.11170400	1.67777000	0.20403100
Н	-2.27465600	1.26283400	-1.33136500
С	0.06061400	-0.22181800	0.90592300
Н	-0.28720300	0.18938900	1.83875700
С	1.80112800	-1.20264400	-0.46348700
С	3.15114300	-1.43971900	-0.75298200
С	1.44440300	-0.43489900	0.66916700
С	4.12515700	-0.91796300	0.07674900
Н	3.41912300	-2.02890600	-1.62124100
С	2.44585100	0.09004500	1.50206800
С	3.77105300	-0.15513100	1.20154900
Н	5.17064300	-1.09688400	-0.13944000
Н	2.17305500	0.67882900	2.36818700

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2013

Н	4.54818100	0.24526100	1.84006000
С	0.23127700	2.03675200	-2.03108500
Н	-0.37180400	1.17775800	-2.32128400
Н	-0.08911200	2.89142600	-2.63401800
Н	1.27618200	1.83831000	-2.27083500

Condensed-phase B3LYP/6-311+G(2d,p) 1,3-dipolar 1 and MAC optimizations in PCM: Water transition structure

	1	2	3
	А	А	А
Frequencies	-411.9268	25.5986	47.9038
Red. masses	10.9107	5.2734	5.8751
Frc consts	1.0908	0.0020	0.0079
IR Inten	445.9180	4.6187	4.3234

Sum of electronic and zero-point Energies=	-948.198419
Sum of electronic and thermal Energies=	-948.179940
Sum of electronic and thermal Enthalpies=	-948.178995
Sum of electronic and thermal Free Energies=	-948.245965

С	-0.62587800	-0.91067000	1.89484400
Ν	0.63551000	-0.84270300	1.61716100
Н	-0.86234500	-0.88453800	2.95264800
Ν	0.98519600	-0.90968500	0.29401000
С	3.19579900	-0.42715500	1.14404700
С	2.92287600	-1.29762900	-1.07572400
Ν	3.96324700	-0.25303900	1.98527300
Ν	3.40057400	-1.84797600	-1.96801300
С	0.84055800	1.34435900	-1.36973300
Н	0.75286800	1.17008500	-2.43344000
С	-0.27414600	2.07475800	-0.80139900
0	-1.28542800	2.38779800	-1.41683100
С	2.32533800	-0.54511800	0.00254800
С	2.11019800	1.24929900	-0.75255100
Н	2.97802300	1.24917300	-1.40204000
Н	2.25464400	1.81475700	0.16033000
С	0.09620700	-0.85449500	-0.72908500
Н	0.47474300	-1.08474100	-1.71121500
С	-1.67350800	-1.01970500	0.92274500
С	-3.02467000	-1.15006800	1.27038000
С	-1.29136100	-1.00958900	-0.43631500
С	-3.97576700	-1.26838700	0.27479000

Н	-3.31157100	-1.15975500	2.31469100
С	-2.26785300	-1.13290600	-1.43663800
С	-3.59545100	-1.26090800	-1.07642100
Н	-5.02148300	-1.36918100	0.53594700
Н	-1.97694600	-1.12407200	-2.47955300
Н	-4.35235900	-1.35641900	-1.84463600
0	-0.10811400	2.38546600	0.51094600
С	-1.16667400	3.13624500	1.12959500
Н	-0.85071900	3.29071200	2.15813800
Н	-1.30002500	4.09472300	0.62848300
Н	-2.10218700	2.57878700	1.10221900

CH₃CN transition structure

	1	2	3	
	А	А	А	
Frequencies	-412.7982	25.6464	48.0514	
Red. masses	10.9065	5.2833	5.9352	
Frc consts	1.0950	0.0020	0.0081	
IR Inten	435.9347	4.3281	4.4816	

Sum of electronic and zero-point Energies=	-948.197829
Sum of electronic and thermal Energies=	-948.179347
Sum of electronic and thermal Enthalpies=	-948.178403
Sum of electronic and thermal Free Energies=	-948.245381

С	-0.62356200	-0.91636300	1.89332000
Ν	0.63771700	-0.84690600	1.61586900
Н	-0.85989500	-0.89346200	2.95125800
Ν	0.98757700	-0.90991700	0.29260600
С	3.19805900	-0.42788400	1.14370600
С	2.92469300	-1.29037100	-1.07969900
Ν	3.96574400	-0.25519800	1.98502600
Ν	3.40141300	-1.83596600	-1.97546900
С	0.83900900	1.34764900	-1.36573800
Н	0.75262400	1.17615200	-2.43002800
С	-0.27833700	2.07476000	-0.79720300
0	-1.28911500	2.38658500	-1.41335200
С	2.32728200	-0.54384200	0.00250100
С	2.10826800	1.25518300	-0.74826000
Н	2.97673500	1.25795100	-1.39684000
Н	2.25056900	1.81736400	0.16695000
С	0.09842200	-0.85189500	-0.73053600
Н	0.47712600	-1.08060700	-1.71297000

-1.67122300	-1.02321900	0.92096100
-3.02227300	-1.15562000	1.26828100
-1.28912200	-1.00890400	-0.43805500
-3.97343000	-1.27165600	0.27250300
-3.30904300	-1.16864200	2.31262000
-2.26572000	-1.12975300	-1.43853700
-3.59319100	-1.25975700	-1.07865200
-5.01906100	-1.37391500	0.53344900
-1.97506300	-1.11707300	-2.48147300
-4.35006700	-1.35313400	-1.84716000
-0.11450100	2.38293900	0.51601500
-1.17560200	3.13025100	1.13440500
-0.86181300	3.28299200	2.16388400
-1.30996100	4.08953700	0.63511600
-2.11001900	2.57109600	1.10368300
	-1.67122300 -3.02227300 -1.28912200 -3.97343000 -3.30904300 -2.26572000 -3.59319100 -5.01906100 -1.97506300 -4.35006700 -0.11450100 -1.17560200 -0.86181300 -1.30996100 -2.11001900	-1.67122300-1.02321900-3.02227300-1.15562000-1.28912200-1.00890400-3.97343000-1.27165600-3.30904300-1.16864200-2.26572000-1.12975300-3.59319100-1.25975700-5.01906100-1.37391500-1.97506300-1.11707300-4.35006700-1.35313400-0.114501002.38293900-1.175602003.13025100-0.861813003.28299200-1.309961004.08953700-2.110019002.57109600

Condensed-phase B3LYP/6-311+G(2d,p) 1,3-dipolar 1 and STY optimizations in PCM:

Α

Water transition structure

	1		2	3
	А		А	A
Frequencies	-417.8401	29.718	2	46.6946
Red. masses	11.3743	5.530	01	5.5905
Frc consts	1.1700	0.002	9	0.0072
IR Inten	851.3613	3.699	99	3.9263
Sum of electron	ic and zero-point Ener	rgies=	-951.328931	
Sum of electron	ic and thermal Energie	es=	-951.310279	
Sum of electron	ic and thermal Enthal	pies=	-951.309335	
Sum of electron	ic and thermal Free E	nergies=	-951.377064	
С	-2.93899700	1.53677300	-0.51609400	
С	-3.33001800	0.18236800	-0.24352100	
С	-2.33929300	-0.68027000	0.25808500	
Н	-3.63908900	2.22814000	-0.97157700	
Ν	-1.78871000	2.04665700	-0.20606800	
Ν	-0.87638300	1.22273100	0.38736600	
С	-0.03294100	-0.65754000	-1.26597500	
Н	-0.74071600	-0.28022300	-1.99639200	
Н	-0.08843100	-1.73146600	-1.12622700	
С	1.23639700	-0.06186600	-1.27929500	
Н	1.35083800	0.87568500	-1.80951900	
С	-0.97906400	-0.16151700	0.34228000	
Н	-0.32004100	-0.65726400	1.04465100	
С	0.38395300	1.78186700	0.61135200	

С	1.20074200	1.25966700	1.62895000
С	0.69413400	3.04862300	0.08263800
Ν	1.88941700	0.82307800	2.45345500
Ν	1.01281900	4.07814000	-0.34318200
С	2.45784200	-0.64389700	-0.77217800
С	3.67284900	0.04333200	-0.96695900
С	2.50084500	-1.88341900	-0.10373900
С	4.87526900	-0.48891900	-0.52949300
Н	3.65962500	1.00185800	-1.47308900
С	3.70549300	-2.41081700	0.33678300
Н	1.59067400	-2.44580500	0.06241600
С	4.89763200	-1.72023100	0.12425100
Н	5.79756500	0.05434900	-0.69608600
Н	3.71754800	-3.36699000	0.84589900
Н	5.83650100	-2.13819600	0.46650800
Н	-4.22152000	-3.46657800	0.66071900
С	-3.96587400	-2.44580000	0.40523800
С	-4.95367500	-1.58903200	-0.09992300
С	-2.66613100	-2.00013100	0.58113300
С	-4.64135800	-0.28177300	-0.42271800
Н	-5.96406300	-1.95388900	-0.23464100
Н	-1.90637700	-2.66814200	0.96896400
Н	-5.39936000	0.38976800	-0.80749500

CH₃CN transition structure

	1	2	3
	А	А	А
Frequencies	-417.8401	29.7182	46.6946
Red. masses	11.3743	5.5301	5.5905
Frc consts	1.1700	0.0029	0.0072
IR Inten	851.3613	3.6999	3.9263

Sum of electronic and zero-point Energies=	-951.328931
Sum of electronic and thermal Energies=	-951.310279
Sum of electronic and thermal Enthalpies=	-951.309335
Sum of electronic and thermal Free Energies=	-951.377064

С	-2.93689700	1.53748300	-0.51884400
С	-3.33032000	0.18396300	-0.24533200
С	-2.34140300	-0.67929400	0.25882600
Н	-3.63518500	2.22945900	-0.97619700
Ν	-1.78637000	2.04608300	-0.20768200
Ν	-0.87606100	1.22171800	0.38807400

С	-0.03258900	-0.65948300	-1.26475900
Н	-0.74108100	-0.28307500	-1.99494500
Н	-0.08749400	-1.73330800	-1.12405400
С	1.23588900	-0.06230300	-1.27791800
Н	1.34911100	0.87530300	-1.80830200
С	-0.98087900	-0.16228800	0.34437200
Н	-0.32253900	-0.65877400	1.04686800
С	0.38473600	1.77905200	0.61290000
С	1.19946000	1.25504100	1.63144800
С	0.69671800	3.04584400	0.08496800
Ν	1.88542300	0.81621600	2.45692000
Ν	1.01721300	4.07477200	-0.34069800
С	2.45845900	-0.64323000	-0.77192700
С	3.67261500	0.04500800	-0.96789400
С	2.50331200	-1.88265300	-0.10364500
С	4.87594500	-0.48636300	-0.53196600
Н	3.65802100	1.00376000	-1.47356000
С	3.70883600	-2.40930600	0.33520900
Н	1.59368500	-2.44558300	0.06367400
С	4.90011900	-1.71776200	0.12141900
Н	5.79753600	0.05789200	-0.69922100
Н	3.72223500	-3.36542600	0.84440300
Н	5.83970300	-2.13491700	0.46270000
Н	-4.22763700	-3.46298000	0.66162400
С	-3.97035300	-2.44281600	0.40530500
С	-4.95630000	-1.58544700	-0.10246300
С	-2.67047400	-1.99838400	0.58286800
С	-4.64190100	-0.27891500	-0.42610600
Н	-5.96690600	-1.94925600	-0.23840700
Н	-1.91213100	-2.66658800	0.97310800
Н	-5.39857800	0.39307600	-0.81274600

Gas-phase B3LYP/6-311+G(2d,p) 1,3-dipolar 1 and MVK optimizations:

transition structure

1	2	3
А	А	А
Frequencies409.6176	31.3064	58.0059
Red. masses 10.7654	5.3210	6.5169
Frc consts 1.0642	0.0031	0.0129
IR Inten 157.2157	3.3732	2.2452
Sum of electronic and zero-point Energies=	-872.924426	
Sum of electronic and thermal Energies=	-872.906963	

Sum of electronic and thermal Enthalpies=			-872.906019
Sum of electronic and thermal Free Energies=			-872.970149
С	0.66580500	-1.67952700	-1.29439300
Ν	-0.59030500	-1.51302400	-1.03748500
Н	0.87041000	-2.22193200	-2.21168100
Ν	-0.90925100	-0.87308800	0.12899500
С	-3.17626500	-1.00254400	-0.71591700
С	-2.75451700	-0.45269500	1.59947800
Ν	-3.98064300	-1.32563700	-1.47474700
Ν	-3.12800600	-0.37779000	2.68731500
С	-0.81437800	1.93521900	0.31152100
Н	-0.72817400	2.31912400	1.32188200
С	0.31528000	2.29879800	-0.54173200
0	1.33163400	2.78152300	-0.05413500
С	-2.25733000	-0.46456600	0.24776700
С	-2.08077400	1.51515500	-0.14126400
Н	-2.95170300	1.82778600	0.42277100
Н	-2.25939800	1.45858900	-1.20901300
С	0.00528300	-0.22364000	0.90251500
Н	-0.33595300	0.09275400	1.87428800
С	1.74436000	-1.20697900	-0.47676400
С	3.09255000	-1.45156800	-0.76818900
С	1.39273300	-0.45788800	0.66711900
С	4.07345700	-0.95012900	0.06560900
Н	3.35505300	-2.03023200	-1.64613000
С	2.40042200	0.05468000	1.49740100
С	3.72450400	-0.19494300	1.19470600
Н	5.11754500	-1.13297700	-0.15561600
Н	2.13481500	0.65538000	2.35763600
Н	4.50355900	0.20522200	1.83145100
С	0.21990700	2.10694000	-2.04769900
Н	-0.27049600	1.17524000	-2.33413200
Н	-0.36075600	2.92775200	-2.47930400
Н	1.22323300	2.13998300	-2.46856000

Gas-phase B3LYP/6-311+G(2d,p) 1,3-dipolar 1 and MAC optimizations:

transition structure

	1	2	3	
	А	А	А	
Frequencies	-412.3038	30.2289	45.9713	
Red. masses	10.8425	5.2342	5.1990	
Frc consts	1.0860	0.0028	0.0065	

IR Inten		145.3863	1.066	53
Sum of electronic and zero-point Energies= -948.176536				
Sum of electronic and thermal Energies=				-948.158068
Sum of elec	tronic	and thermal Enthal	pies=	-948.157124
Sum of elec	tronic	and thermal Free Er	nergies=	-948.223895
			C	
С		-0.56027500	-1.05052800	1.85504300
Ν		0.69774400	-0.94246500	1.58329700
Н		-0.79116100	-1.10030600	2.91407200
Ν		1.05148700	-0.91446400	0.26243300
С		3.26565200	-0.44521500	1.12737200
С		2.95704200	-1.10494400	-1.17805800
Ν		4.04156400	-0.30239100	1.96696000
Ν		3.38978400	-1.52614400	-2.16004700
С		0.80618800	1.43490700	-1.26474000
Н		0.75129100	1.32121200	-2.33935400
С		-0.38684600	2.05137100	-0.69655900
0		-1.40504000	2.27924000	-1.31991400
С		2.37961100	-0.51479100	0.00063300
С		2.05701100	1.39824100	-0.62745700
Н		2.94533500	1.47075300	-1.24308500
Н		2.14318000	1.86849700	0.34437200
С		0.15537500	-0.80601000	-0.75766700
Н		0.53982800	-0.98474200	-1.74834400
С		-1.61070800	-1.10949500	0.88084600
С		-2.96042500	-1.27796300	1.21810700
С		-1.22927400	-1.00096300	-0.47364500
С		-3.91377900	-1.33231700	0.21993300
Н		-3.24509900	-1.36528600	2.26024000
С		-2.21020800	-1.05272900	-1.47603600
С		-3.53529200	-1.21798200	-1.12615600
Н		-4.95839100	-1.46049300	0.47466000
Н		-1.92395300	-0.94784500	-2.51487900
Н		-4.29284300	-1.25278000	-1.89914200
0		-0.26460400	2.34194500	0.62884600
С		-1.39391900	2.99573600	1.22517000
Н		-1.12220500	3.15532900	2.26614500
Н		-1.58871700	3.94833700	0.73248700
Н		-2.28509300	2.37217400	1.15217200

0.4455

Gas-phase B3LYP/6-311+G(2d,p) 1,3-dipolar 1 and STY optimizations: transition structure

	1		2	3
	А		A	А
Frequencies	-416.8231	24.850	5	45.3160
Red. masses	11.4991	5.336	4	5.0119
Frc consts	1.1771	0.001	9	0.0061
IR Inten	217.2986	1.393	37	1.6241
Sum of electron	ic and zero-point Ener	rgies=	-951.306254	
Sum of electron	ic and thermal Energi	es=	-951.287575	
Sum of electron	ic and thermal Enthal	pies=	-951.286631	
Sum of electron	ic and thermal Free E	nergies=	-951.354427	
С	-2.87675900	1.58908400	-0.53604400	
С	-3.34660800	0.25902400	-0.26882700	
С	-2.41212700	-0.64551500	0.26948500	
Н	-3.52581300	2.31676000	-1.01147600	
Ν	-1.70986600	2.04082400	-0.20279300	
Ν	-0.85511600	1.18054100	0.41761900	
С	-0.02798700	-0.72595500	-1.24826200	
Н	-0.76085600	-0.38280000	-1.97019100	
Н	-0.05402200	-1.79656900	-1.07835800	
С	1.21116300	-0.07876000	-1.25862500	
Н	1.28446400	0.85996100	-1.79451300	
С	-1.04020700	-0.19395400	0.39330600	
Н	-0.40444100	-0.72224500	1.09182800	
С	0.42676500	1.66305000	0.65817700	
С	1.19492900	1.03839700	1.66168800	
С	0.80420800	2.93671700	0.18142000	
Ν	1.81225500	0.48540500	2.47018200	
Ν	1.18821700	3.95197900	-0.21757000	
С	2.46720200	-0.61951100	-0.78126300	
С	3.65056600	0.10971700	-1.00216900	
С	2.57017300	-1.85183800	-0.11160900	
С	4.87958800	-0.37794700	-0.58968100	
Н	3.59115300	1.06975600	-1.50243000	
С	3.80084100	-2.33647300	0.30279700	
Н	1.68233600	-2.44106700	0.08261500	
С	4.96116600	-1.60561800	0.06339200	
Н	5.77682000	0.20119900	-0.77182700	
Н	3.85698900	-3.28689400	0.81985200	
Н	5.92118100	-1.98647200	0.39006900	
Н	-4.43625900	-3.34302700	0.61429400	
С	-4.12491900	-2.33617000	0.36420500	
С	-5.05501200	-1.43687900	-0.17609800	

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2013

С	-2.81507100	-1.94871400	0.58417300
С	-4.67078800	-0.14756300	-0.48971300
Н	-6.07639000	-1.75514100	-0.34368600
Н	-2.10134500	-2.64775400	1.00478600
Н	-5.38499100	0.55649500	-0.90113500