Supporting Information

Investigation of Porosity and Heterojuction Effects of Mesoporous

Hematite Electrode on Photoelectrochemical Water Splitting

Jingling Liu^{*a*}, Muhammad Shahid^{*b*}, Young-Seon Ko^{*b*}, Eunchul Kim^{*c*}, Tae-Kyu Ahn^{*c*}, Jong Hyeok

Park^d, and Young-Uk Kwon*^{,a,b}

a SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University, Suwon, 440-746, Republic of Korea

b BK-21 School of Chemical Materials Science, Department of Chemistry, Sungkyunkwan University, Suwon, 440-746, Republic of Korea Fax: +82 031 290 7075; Tel: +82 031 290 7070; E-mail: ywkwon@skku.edu

c Department of Energy Science, Sungkyunkwan University, Suwon, Republic of Korea, 440-746 ^d School of Chemical Engineering, Sungkyunkwan University, Suwon, Republic of Korea, 440-746

Fig. S1 SEM image of mesoporous α -Fe₂O₃ thin film with SnO₂ underlayer (MHF/SnO₂) prepared on FTO substrate calcined at 400 °C.

Fig. S2. (a) SEM image of mesoporous α -Fe₂O₃ thin film (MHF) prepared on FTO substrate, (b) TEM image of MHF, (c) HRTEM of MHF, (d) Small angle X-Ray Diffraction (XRD) patterns of MHF prepared on FTO substrate calcined at 300 °C.

Fig. S3. Cross section SEM of NP-HF.

Fig. S4. (a) Comparison of Photocurrent of multilayers MHF prepared on FTO substrate without filter under front side, measured at +0.5 V vs Ag/AgCl in 1 M NaOH with AM 1.5 G illumination (100 mW/cm²). (b) Comparison of Photocurrent of multilayers MHF/SnO₂ prepared on FTO substrate without filter under front side measured at +0.5 V vs Ag/AgCl in 1 M NaOH with AM 1.5 G illumination (100 mW/cm²).

Table. S1 Comparison of PEC data of nanoprous based hematite electrodes in the literature. The cases on 'pure' hematite electrodes are marked in gray.

Characteristics	Technique	Dopant	Thickness	Processing temperature	Photocurrent (mA /cm ²)	Ref
Encapsulated/ Functionalized porous	Solution- based method	Ti	N/A	800 °C	2.34 (1430 mv V vs. RHE)	1
Mesoporous	Colloidal nanocrystal solution	Sn	250 nm	820 °C	0.68 (1.43 V vs. RHE)	2
Zr doped nanoprous	Spray deposition {	1% Zr	810 nm	500 °C	0.42 (0.6 V vs SCE)	3
		none	850 nm		~0	
Si doped Nanoporous	Spin coating	0.5% Si	~200 nm	500 °C	0.035 (1.23 V vs. RHE)	4
		none			<0.01	
Zn treated nanoprous	Electro- deposition	Zn	N/A	520 °C	~0.035 (0.4 V vs. Ag/AgCl)	5
		none			~0.01	
Nanoprous	Sol-gel		300 nm	750 °C	0.16 (1 V vs. Ag/AgCl)	6
Ti doped nanoporous	Spray- pyrolysis {	(Ti	N/A	350 °C	1.98 (0.5 V vs SCE)	7
		none			0	
Mesoporous/SnO ₂ underlayer	Spin coating	none	175 nm	400 °C	0.045 (0.5 V vs. Ag/AgCl)	This work
		none; triple layer		400 °C	0.12 (0.5 V vs. Ag/AgCl)	

- 1. J. Brillet, M. Grätzel and K. Sivula, Nano Letters, 2010, 10, 4155-4160.
- R. H. Gonçalves, B. H. R. Lima and E. R. Leite, *Journal of the American Chemical Society*, 2011, **133**, 6012-6019.
- P. Kumarn, P. Sharma, A. G. Joshi, R. Shrivastav, S. Dass and V. R. Satsangi, J. Electrochem. Soc, 2012, 159, H685-H691.
- 4. F. L. Souza, K. P. Lopes, P. A. P. Nascente and E. R. Leite, *Solar Energy Materials and Solar Cells*, 2009, **93**, 362-368.
- 5. K. J. McDonald and K.-S. Choi, Chemistry of Materials, 2011, 23, 4863-4869.
- 6. S. Shen, J. Jiang, P. Guo and L. Guo, International Journal of Photoenergy, 2013, 2013, 8.

 S. Kumari, A. P. Singh, Sonal, D. Deva, R. Shrivastav, S. Dass and V. R. Satsangi, International Journal of Hydrogen Energy, 2010, 35, 3985-3990.