Recovering degraded quasi-solid-state dye-sensitized solar cells by applying electrical pulses

Xi Zhang^a, Xuezhen Huang^a, and Hongrui Jiang^{a,b}*

^a Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA. Tel: 608-265-9418. Fax: 608-262-1267. E-mail: hongrui@engr.wisc.edu
^b Materials Science Program, University of Wisconsin-Madison, Madison, WI, 53706, USA.

Fig. S1 Simulated Nyquist plots of C1 before and after P1. Inset is the equivalent circuit model for C1.

Fig. S2 Photovoltaic parameters of C1 during 147 days, during which P1 pulses were applied twice: on the 4th day and the 91st day, respectively.

Table S1 Results of each impedance from simulated Nyquist plots of C1 before and after P1.

treatment	$R_0/arOmega$	R_1/Ω	R_2/Ω	R_3/Ω	
before P1	32.18	7.231	49.14	11.60	
2min after P1	32.67	6.219	39.66	12.16	

Table S2 *J-V* parameters of C2 under AM 1.5G illumination in different degradation and pulse-treatment conditions.

day(s) after fabrication	treatment	V_{oc} / V	J_{sc} / mA cm ⁻²	FF	η (%)
0	none	0.640	8.47	0.607	3.29
14	before P1~P3	0.671	5.90	0.672	2.66
14	10min after P1~P3	0.589	6.55	0.508	1.96
48	none	0.512	0.523	0.586	0.157