Supporting Information

Describing Curved-Planar π - π Interactions: Modeled by Corannulene, Pyrene and Coronene

Jiewei Li, ^{*a,b*} Yuyu Liu, ^{*a*} Yan Qian, ^{*sa*} Lu Li, ^{*a*} Linghai Xie, ^{*sa,c*} Jingzhi Shang, ^{*b*} Ting Yu, ^{*b*} Mingdong Yi^{*a*} and Wei Huang^{*sa,c*}

^{*a*} Center for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210046, China.

^b Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 6373712.

^cJiangsu-Singapore Joint Research Center for Organic/Bio- Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Technology, Nanjing 211816, China.

* To whom correspondence should be addressed: phone, (86) 25 8586 6008; Fax, (86) 25 8586 6008; e-mail, iamwhuang@njupt.edu.cn

SI 1: The visualization details:

The wave functions were generated by Gaussian09 at B97D/TZVP level.

Multiwfn2.6 deals with reduced density gradient (RDG) in real space as equal 1:

$$RDG(r) = \frac{1}{2^* (3^* \pi^2)^{\frac{1}{3}}} * \frac{|\nabla \rho(r)|}{\rho(r)^{\frac{4}{3}}}$$

(1)

Where $\rho(r)$ is electron density and can be defined as equal 2, $\nabla \rho(r)$ is the electron density gradient.

$$\rho(r) = \sum_{i} \eta_{i} \left| \varphi_{i}(r) \right|^{2} = \sum_{i} \eta_{i} \left| \sum_{l} C_{l,i} \chi_{l}(r) \right|^{2}$$

$$\tag{2}$$

Where φ is orbital wave function generated by B97D/TZVP mentioned above, η_i is occupation number of orbital *i*, χ is basis function. *C* is coefficient matrix, the element of *i*th row *j*th column corresponds to the expansion coefficient of orbital *j* respect to basis function *i*. The other details of Multiwfn2.6 are in the web: http://multiwfn.codeplex.com/

Figure S2. Absorption (left) and photoluminescence emission (right) spectra of C16-20(B) (top) and C24-20(B) (down) complexes.

SI 3: The details of transfer integral.

The HOMO (LUMO) of C16, C20, C24 are 53 (54), 65 (66), 78 (79) respectively. The MO1 (MO2) is the orbital number of the former (latter) monomer in dimer/complex, e1 (e2) is the energy of the orbital (eV). t is the transfer integral (meV). If there have degenerate/near-degenerate orbitals, the transfer integral (effective coupling) was calculated by the equal:

$$t = \sqrt{t_1^2 + t_2^2 + t_3^2 \dots t_i^2}$$
(3)

Where t_i is the transfer integral of each relative orbital.

C16-16	:			
MO1	MO2	e1	e2	t
53	53	-4.859	-4.859	114.599
54	54	-2 224	-2 224	-123 966
54	54	2,227	2.227	125.700
C16-20	(B):			
MO1	MO2	e1	e2	t
53	64	-4.770	-5.382	-13.042
53	65	-4 770	-5 379	-27 256
Effectiv	ve counti	$in\sigma =$	30 216	27.200
MO1	MO2		e?	t
54	66	2 1 2 7	2 3 3 4	25 801
54	67	-2.127	-2.554	122 212
J4 Effectiv	07 12 000012	-2.123	-2.321 125 600	155.212
Enecuv	e coupi	ing =	155.088	
C16-20	(M):			
MO1	MO2	e1	e2	t
53	64	-4.988	-5.475	0.056
53	65	-4 988	-5 442	-10 930
Effectiv	ve counti	$in\sigma =$	10.930	10.950
MO1	MO2	ш <u>ь</u> – е1	e2	t
54	66	-2 348	-2 408	49 268
54	67	2.540	-2.400	0.587
J4 Effectiv	07 12 000012	-2.540	-2.412	-0.387
Effectiv	e coupi	ling =	49.271	
C16-24	:			
MO1	MO2	e1	e2	t
53	77	-4 784	-5.028	132 324
53	78	-1 781	-5.020	120 726
Effectiv	70 ve counti		185 306	129.720
MO1	MO2	سے ung –	105.500	+
54	70	21/9	2 152	15 260
54	20 20	-2.140	-2.133	-15.209
	0U	-2.145	-2.14/	136.237
Enecuv	e coupi	ing =	138.992	
C24-24	:			
MO1	MO2	e1	e2	t
77	77	-4.993	-4.993	-50.139
77	78	-4.993	-4.995	-16.218
78	77	-4 995	-4 993	0.677
78	78	-4 980	_ <u>4</u> 980	179 154
70 Effectiv		- - -,709	186 745	117.134
MO1	MO2	mg –	100.74J	+
	70	2110	€∠ 2.120	ι 20.0 <i>2</i> 0
19	17	-2.110	-2.120	00.000

79	80	-2.117	-2.113	52.085		
80	79	-2.117	-2.121	51.510		
80	80 -2.11		-2.112	-80.664		
Effectiv	ve coupli	ng =	135.212			
	1	U				
C24-20(B):						
MO1	MO2	e1	e2	t		
77	64	-4.944	-5.344	-31.572		
77	65	-4.945	-5.341	1.395		
78	64	-4.944	-5.344	2.751		
78	65	-4.944	-5.341	-6.124		
Effectiv	ve coupli	ng =	32.308			
MO1	MO2	e1	e2	t		
79	66	-2.066	-2.298	13.553		
79	67	-2.064	-2.292	79.849		
80	66	-2.063	-2.298	3.874		
80	67	-2.063	-2.294	-7.743		
Effective coupling = 81.452						
	-	•				
C24-20	(M):					
MO1	MO2	e1	e2	t		
64	77	-5.352	-5.174	-34.373		
64	78	-5.351	-5.175	64.130		
65	77	-5.346	-5.174	-2.269		
65	78	-5.346	-5.176	10.760		
Effective coupling = 73.587						
MO1	MO2	e1	e2	t		
66	79	-2.294	-2.297	38.915		
66	80	-2.294	-2.297	6.497		
67	79	-2.288	-2.297	7.018		
67	80	-2.284	-2.294	132.794		
Effective coupling =			138.709			

	L (L (
	C16	C20	C16-16	C16-20(B)	C16-20(M)
C16 wavelength ^a	1417.7	-	1405.3 ^b	1419.3	1423.9
C16 intensity	222.41	-	286.31	97.24	108.79
C16 Raman shift ^{a,b}	-	-	-12.4	1.6	6.2
C20 wavelength	-	1435.5	-	1439.9	1435.0
C20 intensity	-	361.44	-	227.91	143.59
C20 Raman shift	-	-	-	4.4	-0.5

Table S4. The Raman data of the oxidation-state of the planar (C16) and curved molecules (C20), and in P-P dimer (C16-16), C_B -P [C16-20(B)] and C_M -P [C16-20(M)] complexes.

^a Unit is cm⁻¹. ^b Raman peak position of dimer/complex originating from the isolated monomer. ^c Raman shift between the isolated monomer and corresponding monomer in dimer/complex. Table S 5 is the same.

Table S5. The Raman data of the oxidation-state of the planar (C24) and curved molecules (C20), and in P-P dimer (C24-24), C_B -P [C24-20(B)] and C_M -P [C24-20(M)] complexes.

	C24	C20	C24-24	C24-20(B)	C24-20(M)
C24 wavelength	1356.7	-	1322.1	1362.1	1363.1
C24 intensity	874.86	-	754.26	466.23	483.16
C24 raman shift		-	-34.6	5.4	6.4
C20 wavelength	-	1435.5	-	1436.6	1435.8
C20 intensity	-	361.45	-	168.95	184.53
C20 Raman shift		-	-	1.1	0.3