1	Supplementary materials for
2	Origin of electrolyte-dopant dependent sulfur poisoning of SOFC anodes:
3	ZhenHua Zeng ¹ , Mårten E. Björketun ¹ , Sune Ebbesen ² , Mogens B. Mogensen ² and Jan
4	Rossmeisl ^{1*}
5	¹ Center for Atomic-Scale Materials Design, Department of Physics, Technical University
6	of Denmark, 2800 Kgs. Lyngby, Denmark
7	² Department of Energy Conversion and Storage, DTU Risø Campus, Technical
8	University of Denmark, P.O. Box 49, 4000 Roskilde, Denmark.
9	jross@fysik.dtu.dk

10 S1. Model systems and computational details

To simulate the anode triple phase boundary (TPB) in Ni-XSZ (X_2O_3 stabilized zirconia) 11 solid oxide fuel cells (SOFC), we use models of Ni nanorods supported on XSZ(111) 12 substrates, as shown in Figures 1 and Figure S1. The nanorod is 3 atomic layers in height, 13 3 atoms wide in the x-direction (infinite length when accounting for periodic boundary 14 15 conditions), and 2 and 4 atoms wide in the y-direction for top and bottom layers, respectively. Furthermore, the nanorod is (111) terminated in the z-direction, while it 16 17 exposes two different facets, Ni(111) and Ni(100), on the -y and +y sides of the TPB, a 18 geometry that enables us to study Ni atoms with different reactivity. The XSZ(111) substrates are constructed from a ZrO₂(111)-c(2×4) supercell with three O-Zr-O triple 19 20 layers in the z-direction. This results in a mismatch of -5.8% for Ni in the periodic xdirection. The dopant (X_2O_3) concentration in the XSZ substrate is fixed at 9% mol, which 21 22 corresponds to removing two oxygen atoms from and substituting 4 Zr atoms with X atoms in the $ZrO_2(111)$ -c(2×4) supercell. This concentration is in the middle of the 23 normal experimental range of 8% to 10%.¹⁻³ For Ni-ScSZ (scandia stabilized zirconia) and 24 Ni-YSZ (yttria stabilized zirconia) the models are geometrically optimized for Ni atoms 25 and all possible positions of the cation dopants and O vacancies in the two upper triple 26 layers. The bottom triple layer, which contains only Zr and O, is kept fixed during 27 relaxations. The most stable TPB models located in this screening are shown in Figures 1 28 29 and Figure S1 (the atomic positions in Cartesian coordinates are given in Table S2 and Table S3). For other Ni-XSZ systems, structural optimizations start from the most stable 30 Ni-ScSZ and Ni-YSZ models. The energetically most favorable Ni-AlSZ and Ni-GaSZ 31 32 structures are obtained starting from the Ni-ScSZ configuration, while the most stable Ni-InSZ and Ni-LaSZ systems are derived from Ni-YSZ. The above models are similar to 33 those previously used in DFT calculations on Ni-YSZ and Au-TiO2.4, 5 However, the Ni 34

nanorod used in the present study is wider in the y-direction, and the lowest Ni
coordination number is 7 not counting perimeter atoms in contact with the substrate.

37

38 S1.1. Ni(100) reconstruction

In the absence of constraints, the clean Ni(100) facet at the TPB reconstructs into a Ni(111) type facet during geometric optimization. The reconstruction is mediated by a shift of the middle row atoms along the x-axis. To prevent the reconstruction and facilitate evaluation of the relative stability with respect to the reconstructed Ni(100) facet, a fix-x-coordinate constraint is applied to one of the middle row atoms. The relative stability, i.e. reconstruction energy (E_{RC}), is defined as:

45 $E_{RC} = (E_{tot}(Ni(100)-RC-XSZ) - E_{tot}(Ni(100)-XSZ))/N$ (S1)

46 where $E_{tot}(Ni(100)-RC-XSZ)$ and $E_{tot}(Ni(100)-XSZ)$ are the total energy of Ni-XSZ with a 47 reconstructed and pristine Ni(100) facet, respectively. *N* is the number of Ni atoms on 48 the Ni(100) facet; it is 9 in the present Ni-XSZ models.

49

50 **S1.2. Sulfur adsorption**

- The original, pristine, Ni(100) facet may be automatically restored upon sulfur adsorption on particular sites of Ni-XSZ, e.g. on the HCP11 site of Ni-YSZ. To obtain sulfur adsorption energies on this type of sites a few constrains are set iterantly: first, fix the substrate and optimize only the sulfur position; then release constraints except for the x coordinate of sulfur (the bottom O-Zr-O triple layer is always fixed). The process is repeated until convergence is reached.
- 57

58 The sulfur adsorption energy is defined as:

59 $E_{ad} = E_{tot}(S/Ni-XSZ) - E_{tot}(S) - E_{tot}(Ni-XSZ)$

and the energy for dissociative adsorption of H_2S is defined as:

61 $E_{\text{diss}} = E_{\text{tot}}(S/\text{Ni-XSZ}) + E_{\text{tot}}(H_2) - E_{\text{tot}}(H_2S) - E_{\text{tot}}(\text{Ni-XSZ})$ (S3)

62 where $E_{tot}(S)$, $E_{tot}(H_2)$, $E_{tot}(H_2S)$, $E_{tot}(Ni-XSZ)$ and $E_{tot}(S/Ni-XSZ)$ are the total energy of S,

(S2)

H₂ and H₂S in a box, of the clean Ni-XSZ system and of Ni-XSZ with a sulfur adsorbate,

64 respectively. The adsorption energies and dissociative adsorption energies are reported

- 65 in Table 1 and **Table S1**.
- 66
- 67 We notice that the absolute adsorption energy is way off for O adsorption if O_2 is used
- as a reference, because this molecule is notoriously poorly described in standard DFT
- calculations.⁶ However, when using O or H_2O and H_2 as a reference, then the error is
- 70 much smaller because those atoms and molecules are much better described at the
- 71 RPBE level.^{6, 7} The same principle may apply for S adsorption. Thus, the present scheme,

i.e. using S or H₂ and H₂S not S₂ as references, probably gives the absolute adsortion
energies with high quality.

74

75 S1.3. Ni-XSZ adhesion

Ni is involved in two sequential interactions; first with XSZ and then with sulfur. Due to the bonding competition effect, as in the case of coverage dependent adsorption,^{8,9} the first interaction is likely to influence the subsequent interaction/adsorption. This suggests that the Ni-XSZ interaction may be used as a descriptor for the sulfur adsorption/poisoning at the TPB of the Ni-XSZ anode. To test this idea, the adhesion energy of Ni-XSZ, which is the work per unit area required to separate the Ni nanorod from the support, was calculated with the formula

83 $W_{adh} = (E_{tot}(Ni) + E_{tot}(XSZ) - E_{tot}(Ni - XSZ))/A$

(S4)

where E_{tot} (Ni-XSZ) is the total energy of the most stable Ni-XSZ models, and E_{tot} (Ni) and E_{tot} (XSZ) are the static/unrelaxed total energy of the Ni nanorod and XSZ substrate separated from the most stable Ni-XSZ, respectively. A is the area of Ni(111)-c(3x4) in contact with the XSZ support – 61.66 Å² in this case.

88

89 S1.4. Relation between Ni-XSZ adhesion and XSZ surface energy

The Ni-XSZ adhesion energy is closely related to the surface energy of XSZ. To study their 90 91 relation, the surface energies of XSZ(111) and ZrO₂(111) are calculated using structures derived from a ZrO₂(111)-(2x2) supercell. The ZrO₂(111) bulk reference is composed of 92 three O-Zr-O triple layers in the z-direction. XSZ(111) bulk structures are obtained by 93 introducing one X_2O_3 unit in the first two O-Zr-O triple layers of the ZrO₂ bulk model. 94 This yields the same X_2O_3 concentration as in the Ni-XSZ models, i.e. 9%. We note that it 95 96 is identical for the doping of X_2O_3 in any two of O-Zr-O triple layers in $ZrO_2(111)$ bulk 97 reference due to periodic boundary condition. However, the present setup facilitates 98 surface energy calculations by ensuring that the bottom surface (and its energy) is 99 identical to the pristine ZrO₂ surface, i.e. it separates the total surface energy of XSZ into contributions from ZrO₂(111) and XSZ(111) (see Eq. S6 below). The bulk structures are 100 101 optimized using cells of fixed shape and extension in the xy plane, but of variable length in the z-direction. In the case of doped systems, the minimum energy structures were 102 found by carrying out relaxations for all possible distributions of the two X^{3+} cations and 103 the O vacancy. We found that the two X^{3+} prefer to be in different layers, but stay 104 nearest neighbors. The O vacancy prefers a subsurface-like position somewhere in the 105 first O-Zr-O triple layer, but the exact locations depends on the dopants. For AISZ and 106 GaSZ it coordinates directly with X^{3+} , however, for other XSZ's it assumes a position 107 further from X^{3+} . 108

110 The surface energy is calculated for both relaxed and static (unrelaxed) surfaces. Static 111 surfaces are obtained by cleaving bulk models and inserting a vacuum layer. The relaxed 112 surfaces of ScSZ and YSZ are obtained by geometric optimization of the first two O-Zr-O 113 triple layers, and by considering all possible distributions of the X^{3+r} s and the O vacancy

- in those layers. The most favorable distributions of Sc^{3+}/Y^{3+} and the O vacancy turn out
- to be identical to those in the bulk models. Thus, for other systems, we simply start the
- 116 geometric optimization from static surface models, i.e. those obtained by cleaving the
- 117 most stable bulk models. The surface energy of ZrO₂ is calculated according to:

118
$$\gamma$$
(ZrO₂)=(E_{surf} (ZrO₂)- E_{bulk} (ZrO₂))/2 (S5)

- 119 where E_{bulk} is the total energy of the bulk model and E_{surf} is the total energy of surface
- model. The surface energies of XSZ's are calculated by subtracting the ZrO₂ part (bottom
- side of slab) from the total surface energy of XSZ:
- 122 $\gamma(XSZ) = \Delta E(XSZ) \gamma(ZrO_2)$

where $\Delta E(XSZ)$ is the total surface energy of XSZ, calculated according to $\Delta E(XSZ)=E_{surf}(XSZ)-E_{bulk}(XSZ)$. We note that, with the current atomic setup, the above formulas will give the surface energies of (2 x 2) unit wide surfaces. To convert to a standard unit, e.g. j/m², the area of the surface, i.e. 46.24 Å², must be considered.

(S6)

127

128 S1.5. DFT details

If nothing else is specified, the density functional theory (DFT) calculations are 129 performed spin-polarized using GPAW, a real-space PAW code,^{10, 11} in linear-130 combination-of-atom-orbitals (LCAO) mode with a double-zeta polarized basis. The 131 density, effective potential, and wave functions (for finite difference (FD) mode) are 132 evaluated on a real space grid with a grid spacing of around 0.18 Å. The exchange-133 correlation energy is evaluated with an RPBE¹² generalized gradient approximation (GGA) 134 functional. The Brillouin zone (BZ) of cc Ni bulk is sampled with a (12x12x12) Monkhorst-135 Pack k-point grid, the BZ of cubic ZrO_2 bulk with a (8x8x8) k-point grid (12x1), the BZ's of 136 bulk ZrO₂(111)-(2x2) and XSZ(111)-(2x2) with three O-M-O triple layers in the z-direction 137 with a (4x4x3) grid, the BZ's of cleaved $ZrO_2(111)-(2x2)$ and XSZ(111)-(2x2) surface 138 supercells with a (4x4x1) grid, the BZ's of Ni-XSZ(111)-c(2x4) triple phase boundary 139 140 models with a (4x2x1) grid, and the BZ's of Ni(111)-(2x2) and Ni(100)-(2x2) surface supercells with a (6x6x1) grid. In the surface calculations, periodically repeated slabs are 141 separated by at least 10 Å of vacuum in the direction perpendicular to the surface. For 142 isolated atoms and molecules we use a (15Åx15Åx15Å) box and only I-point Bloch 143 functions. Lattice constants are determined by fitting to an equation of state (EOS).¹³ 144 That result in lattice constants of 5.167 Å for ZrO_2 (the experimental values is 5.09 Å¹⁴); 145 3.483 Å, 3.595 Å and 3.671 for Ni calculated in LCAO mode, FD mode and FD mode with 146 van der Waals correction (wD-DF2)¹⁵, respectively (the experimental value is 3.52 Å¹⁶). 147

During structural optimization, the atomic positions are relaxed until the maximum force is less than 0.02 eV/Å. The nudged elastic band (NEB) method is employed for calculations of reconstruction barriers.¹⁷⁻¹⁹

151

152 **S2. Reliability of the present study**

The main conclusions in the present work are based on results obtained from DFT calculations performed in LCAO mode. There are two issues that may influence the reliability of the present study. The first one is whether the results from zerotemperature DFT calculations are still valid under SOFC operating conditions as the temperature is usually around 1000 K. The second one is the reliability of the DFT calculations themselves.

159

The first issue relates to the vibrational entropy (ΔS_{vib}) at high temperature and its 160 influence on the surface free energy and adsorption free energy. When the temperature 161 increases, the vibrational entropy gets larger (see Eq S11) and its contribution (- $\Delta T S_{vib}$) 162 to the surface free energy and the adsorption free energy becomes more important. The 163 vibrational frequencies are slightly different for surface atoms (and adsorbates) on 164 Ni(111) and Ni(100) surfaces. As the entropy of adsorbed S and metal Ni is very small, 165 the vibrational contribution to the entropy difference between Ni(111) and Ni(100) 166 surfaces must be very small. Consequently, even though the surface (adsorption) free 167 168 energies of both Ni(111) and Ni(100) depend on the temperature, the corresponding 169 difference is only weakly temperature dependent. We thus conclude that the relative stability of Ni(111) and Ni(100) surfaces (i.e. the trends in surface reconstruction), and 170 171 sulfur adsorption on them, predicted from zero-temperature DFT calculations, are still 172 valid under SOFC operating conditions.

173

174 The second issue is about the modes and parameters used in DFT calculations. For LCAO mode, small basis sets are susceptible to basis set superposition errors (BSSE's). As a 175 176 result there could be an uncertainty related with the conclusions deduced from the 177 sulfur adsorption energies calculated on Ni atoms at the TPB of Ni-XSZ. To assess the effect of the BSSE's, we first calculate sulfur adsorption energies on Ni(111) and Ni(100) 178 terraces and correct the energies using the counterpoise method (CP).^{20, 21} Calculations 179 performed in FD mode are also used as a benchmark. The results are given in **Table S1**. 180 It is seen that the BSSE's are significant in the present calculations (0.72 eV for 181 adsorption on Ni(111) and 0.87 eV for adsorption on Ni(100)). Actually, even when the 182 BSSE's are accounted for, the adsorption energies still differ slightly from the results 183 184 obtained in FD mode. However, it is worth noticing that the energy differences between

the adsorption on Ni(111) and Ni(100) are only weakly dependent on the basis set as 185 well as on all other parameters; they range from 0.52 eV to 0.72 eV for all different 186 modes and parameter settings (see Table S1). For sulfur adsorption on the TPB, the 187 BSSE's are likely to remain big because of the structural similarity between Ni facets at 188 the TPB and the corresponding terraces. Differences in energy between adsorption on 189 190 different sites or with respective to adsorption on Ni(111) or Ni(100) are, on the other 191 hand, expected to be fairly independent of settings. Thus, it is more reliable to focus on relative adsorption energies and that is exactly what we do in the present 192 193 communication, i.e. the adsorption energies are compared with respect to the value on the Ni(111) terrace. (Actually, as discussed in next section, the relative adsorption 194 energy is also more important because it reflects the relative sulfur tolerance of 195 different Ni-XSZ anodes.) The reliability of the scheme is further verified by 196 197 complementary static calculations on typical TPB models within the FD mode (see Figure **52**); LCAO and FD calculations predict the same trend for relative adsorption energies. 198 199 Thus, we conclude that even though the LCAO calculations are associated with large BSSE's, the relative sulfur tolerance of different Ni-XSZ anodes can be accurately 200 201 predicted.

202

S3. Impact of the adsorption energy on the sulfur tolerance

204 The main source of sulfur poisoning is H₂S. The poisoning mechanism is as follow:

205 $H_2S(g) + * \rightarrow S^* + H_2(g)$

206 The free energy of this reaction is

207 $\Delta G = G(S^*) + G(H_2) - G(H_2S) - G(*)$ (S8)

208 where G is the Gibbs energy of the substances involved in the reaction, and can be 209 expressed as

(S7)

$$210 \quad G=E_{tot}+\mu \tag{S9}$$

211 E_{tot} is the total energy, obtained from DFT calculations, $\mu = \Delta H - T\Delta S$ is the chemical 212 potentials. For the molecules in gas phase, μ is taken from standard thermodynamic 213 tables.²² For the adsorbed sulfur atoms, μ is calculated using the vibrational frequencies 214 in Ref.²³ with the below formula.^{23 24}

215
$$\Delta H = R \sum_{i} \left(\frac{\tau_i}{2} + \frac{\tau_i}{\exp(\tau_i/T) - 1} \right)$$
 (S10)

216
$$\Delta S = R \sum_{i} \left(\frac{\tau_i / T}{\exp(\tau_i / T) - 1} - \ln(1 - \exp(-\tau_i / T)) \right)$$
(S11)

217 Where R is gas constant, and τ is the vibrational temperature.

218

219 Using the above expressions, the Eq. S8 can be rewritten as

 $220 \qquad \Delta G = \Delta \mu_{\text{H2S}} - E_{\text{diss}} \tag{S12}$

221 E_{diss} is H₂S dissociative adsorption energy as given in Eq. S3, $\Delta \mu_{H2S}$ is the chemical 222 potential of H₂S with respect to dissociated H₂S (H2 and S*) and is calculated with

223 $\Delta \mu_{\text{H2S}} = \mu_{\text{H2S}} - \mu_{\text{S}} - \mu_{\text{H2}}$ (S13)

The dissociative adsorption energies on Ni(111) and Ni(100) surfaces, and the chemical potentials of H_2S with respect to dissociated H_2S and at different conditions are plotted in **Figure S3**.

227

228 The diagram provides a way to roughly estimate the sulfur tolerance of Ni(111), Ni(100) 229 or Ni-XSZ at a given set of conditions by comparing E_{diss} and $\Delta \mu_{H2S}$, and the free energy of the reaction, ΔG , in Eq. S12. For example, on Ni(111) the highest tolerable H₂S 230 231 concentration at 1200 K seems to be about 0.1 ppm, which according to adsorption 232 kinetics ($\theta_s = 1/(1 + \exp((E_{diss} - \Delta \mu)/k_B T))$) would yield an equilibrium sulfur coverage 233 of 7.7%. On Ni(100), on the other hand, 0.1 ppm H₂S would probably be too much even 234 at 1500 K and result in an equilibrium sulfur coverage of 11%. Due to the uncertainty in 235 the calculated adsorption energies (see **Table S1**), the predicted coverages might have a 236 large error bar. However, the trend should be correct since calculated differences in adsorption energies are much more accurate. Stronger dissociative adsorption, e.g. on 237 Ni(100) compared to Ni(111), means the poisoning problem will be more severe and 238 stricter control of the operating conditions is needed e.g. higher temperature or lower 239 H₂S concentration. Therefore, it should be possible to use Figure S3 to estimate the 240 241 relative sulfur tolerance of different Ni-XSZ anodes.

From **Figure S3** we see that the chemical potential of H₂S changes approximately 0.15 eV per 100 K or 0.2 eV per 120-150K. Focusing on the trend at 1000 K, we see that an order of magnitude change in the H₂S concentration, e.g. from 0.1ppm ($\Delta\mu$ =-1.8 eV) to 1 ppm ($\Delta\mu$ =-1.6 eV) or from 1 ppm to 10 ppm ($\Delta\mu$ =-1.4 eV), corresponds to a 0.2 eV

- 246 change in chemical potential (it would be larger at higher temperature due to larger
- 247 contribution of H_2S than H_2 and S^*). This means that if the sulfur adsorption on the TPB
- of a given Ni-XSZ is 0.2 eV weaker than on the TPB of another anode, e.g. Ni-YSZ, the
- same sulfur tolerance can be achieved at a 120-150 K lower operating temperature; or
- 250 the sulfur tolerance can be improved by 1 order of H₂S concentration at around 1000 K
- 251 or higher temperature.

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2013

253			
254 255			

256

- 257 Figure S1 Model of the Ni-ScSZ TPB. See Figure 1 for details and explanation. The Sc
- atoms are denoted by white balls.

259

262 Figure S2 Trend in relative adsorption energy obtained with LCAO and FD calculations.

Figure S3 Chemical potential of H_2S with respect to dissociated H_2S (H_2 and S^*) at a few relevant temperatures and concentrations.

Figure S 4 Sulfur adsorption energies on ScSZ and YSZ. The adsorption energies are plotted versus several parameters: the X^{3+} radius; the surface energy (γ) of XSZ; the adhesion energy (W_{adh}) of Ni-XSZ; and the reconstruction energy (E_{RC}) of the Ni(100) facet. The line indicates the change in average adsorption energy from ScSZ to YSZ.

- 272
- 273
- 274

276

277 Table S1 sulfur adsorption energy and H₂S dissociative adsorption energy on Ni(111) and

278 Ni(100) surfaces, calculated with different DFT codes and/or setups. The reaction

energies of $S(g)+H_2(g) \rightarrow H_2S(g)$ are -3.20 eV in LCAO mode, -3.13 eV in FD mode, and -

280 2.92 eV in FD model with van der Waals correction, respectively.

				E^{S}_{ad}	(eV)	$E_{dis}^{H_2S}$	(eV)	
code	Basis sets	XC	Spin ^a	Ni(111)	Ni(100)	Ni(111)	Ni(100)	Ref.
GPAW	LCAO	RPBE	True	-5.14	-5.84	-1.93	-2.64	Present work
GPAW	LCAO-BSSE	RPBE	True	-4.42	-4.97	-1.21	-1.76	Present work
GPAW	Grid-FD	RPBE	True	-4.61	-5.28	-1.43	-2.15	Present work ^b
GPAW	Grid-FD	RPBE	True	-4.77	-5.33	-1.64	-2.20	Present work
GPAW	Grid-FD	RPBE	False	-4.99	-5.68	-1.86	-2.55	Present work
GPAW	Grid-FD	vdW-DF2	True	-4.64	-5.16	-1.72	-2.24	Present work
GPAW	Grid-FD	RPBE	False			-1.76		[23]
VASP	Plane wave	PBE	Unknown	-5.29	-5.97	-1.96	-2.64	[25]
VASP	Plane wave	PBE	True	-5.31				[26]
VASP	Plane wave	PW91	True	-5.16				[27]
VASP	Plane wave	PW91	False			-1.75		[28]

^aSpin-polarized or spin-paired calculation refers to the TPB species; gas-phase

atoms/molecules are always subject to spin-polarized treatment.

^bThe calculations were performed on LCAO optimized structures without further

284 relaxation.

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2013

286

288	Table S2 Cartesian coordinates of a Ni-YSZ model in a (7.307241 Å, 12.656514 Å,
289	23.483351 Å) orthorhombic cell.

No.	element	x (Å)	y (Å)	z (Å)
1	Zr	1.8268	1.0547	5.7458
2	Zr	5.4804	1.0547	5.7458
3	Zr	0	4.2188	5.7458
4	Zr	3.6536	4.2188	5.7458
5	Zr	1.8268	7.383	5.7458
6	Zr	5.4804	7.383	5.7458
7	Zr	0	10.5471	5.7458
8	Zr	3.6536	10.5471	5.7458
9	Zr	-0.01711	2.15198	8.74171
10	Zr	3.67069	2.15232	8.74187
11	Zr	5.48005	5.18914	8.59744
12	Zr	-0.12361	8.3548	8.71949
13	Zr	3.77625	8.35468	8.71973
14	Zr	1.82765	11.77374	8.62617
15	Zr	0.00238	-0.11103	11.6964
16	Zr	3.65061	-0.11269	11.6954
17	Zr	5.47875	2.94398	11.93106
18	Zr	0.12986	6.58381	11.76334
19	Zr	3.52121	6.58458	11.76333
20	Zr	1.82782	9.69939	12.08754
21	Y	1.82721	3.33388	11.80782
22	Y	5.48112	11.57313	8.74185
23	Y	1.82673	5.29036	8.78561
24	Y	5.48138	9.58366	11.83727
25	0	1.8268	5.2735	6.4916
26	0	5.4804	5.2735	6.4916
27	0	0	8.4377	6.4916
28	0	3.6536	8.4377	6.4916
29	0	1.8268	11.6018	6.4916
30	0	5.4804	11.6018	6.4916
31	0	0	2.1094	6.4916
32	0	3.6536	2.1094	6.4916
33	0	-0.31068	6.30779	9.63057

34	0	3.96335	6.30719	9.63079
35	0	5.48046	9.32689	9.53237
36	0	0.09749	12.75985	9.51515
37	0	3.55702	12.75901	9.51465
38	0	1.82654	3.09276	9.53649
39	0	5.48011	3.27378	9.62024
40	0	-0.4396	4.57997	11.98911
41	0	4.08755	4.57818	11.98937
42	0	1.82599	7.67483	12.93793
43	0	5.47951	7.34592	12.21691
44	0	0.0582	10.60917	12.74906
45	0	3.59628	10.60986	12.74856
46	0	1.82779	0.37522	12.62148
47	0	5.47871	0.62711	12.87697
48	0	1.8268	3.1641	5
49	0	5.4804	3.1641	5
50	0	0	6.3283	5
51	0	3.6536	6.3283	5
52	0	1.8268	9.4924	5
53	0	5.4804	9.4924	5
54	0	0	0	5
55	0	3.6536	0	5
56	0	-0.03125	4.18769	7.92094
57	0	3.68464	4.18777	7.92067
58	0	1.82652	7.55682	8.16378
59	0	5.48035	7.36704	7.85317
60	0	0.18626	10.42726	8.07245
61	0	3.46767	10.42741	8.07251
62	0	1.82684	1.10606	7.88709
63	0	5.4806	1.17093	7.97397
64	0	-0.05993	1.99536	11.21294
65	0	3.71234	1.99429	11.21164
66	0	1.82566	5.56624	11.07188
67	0	0.38761	8.57398	10.83271
68	0	3.26506	8.57361	10.83259
69	0	1.82699	11.22117	10.70125
70	0	5.48092	11.61518	10.97217
71	Ni	1.82497	0.778	14.51796
72	Ni	4.26617	0.81534	14.5775

74	Ni	0.623	2.83311	14.36398
75	Ni	3.02622	2.83283	14.36384
76	Ni	5.47915	2.85227	14.44832
77	Ni	1.82376	4.9289	14.30855
78	Ni	4.21827	4.87754	13.98706
79	Ni	6.73727	4.87821	13.98712
80	Ni	0.6051	7.02155	14.46374
81	Ni	3.04361	7.02128	14.46446
82	Ni	5.47771	6.93623	14.22848
83	Ni	0.61328	1.58561	16.48799
84	Ni	3.03432	1.58415	16.4883
85	Ni	5.47857	1.61093	16.56496
86	Ni	1.82391	3.69135	16.28265
87	Ni	4.24205	3.74911	16.20929
88	Ni	6.71528	3.74922	16.20866
89	Ni	1.82471	6.13618	16.41024
90	Ni	4.27638	6.07262	16.18358
91	Ni	6.68117	6.07311	16.18311
92	Ni	1.82494	2.70946	18.35401
93	Ni	4.2524	2.731	18.31477
94	Ni	6.70371	2.73089	18.31439
95	Ni	0.58796	4.83732	17.97914
96	Ni	3.06159	4.83671	17.97898
97	Ni	5.4783	4.83908	17.94159

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2013

292

294	able S3 Cartesian coordinates of a Ni-ScSZ model in a (7.307241 Å, 12.656514 Å,
295	23.483351 Å) orthorhombic cell.

No.	element	x (Å)	y (Å)	y (Å)
1	Zr	1.8268	1.0547	5.7458
2	Zr	5.4804	1.0547	5.7458
3	Zr	0	4.2188	5.7458
4	Zr	3.6536	4.2188	5.7458
5	Zr	1.8268	7.383	5.7458
6	Zr	5.4804	7.383	5.7458
7	Zr	0	10.5471	5.7458
8	Zr	3.6536	10.5471	5.7458
9	Zr	-0.00146	2.16182	8.61142
10	Zr	1.81393	5.19698	8.59187
11	Zr	5.47305	5.23541	8.73304
12	Zr	3.56064	8.26679	8.6702
13	Zr	1.99169	11.45534	8.64802
14	Zr	5.55693	11.83529	8.62753
15	Zr	-0.10332	-0.12192	11.80786
16	Zr	3.48147	-0.2093	11.65041
17	Zr	1.82888	3.01634	11.84774
18	Zr	-0.08083	6.63411	11.65941
19	Zr	3.81686	6.61131	11.71795
20	Zr	5.44881	9.68464	11.96341
21	Sc	3.59196	2.08581	8.68687
22	Sc	0.14489	8.32927	8.67318
23	Sc	5.24911	3.40176	11.61255
24	Sc	1.56684	9.62418	11.57331
25	0	1.8268	5.2735	6.4916
26	0	5.4804	5.2735	6.4916
27	0	0	8.4377	6.4916
28	0	3.6536	8.4377	6.4916
29	0	1.8268	11.6018	6.4916
30	0	5.4804	11.6018	6.4916
31	0	0	2.1094	6.4916
32	0	3.6536	2.1094	6.4916
33	0	0.25805	6.28594	9.52248

34	0	3.38829	6.23791	9.56277
35	0	1.9115	9.37873	9.43681
36	0	-0.33209	13.11385	9.7479
37	0	3.66922	12.64464	9.4775
38	0	1.69541	3.18777	9.5681
39	0	5.56294	3.22053	9.55423
40	0	0.70943	4.75211	11.82055
41	0	3.36152	4.53471	11.85166
42	0	1.90391	7.52759	12.08702
43	0	5.50579	7.66762	12.85108
44	0	0.00207	10.50404	12.6577
45	0	3.45934	10.39667	12.33262
46	0	1.82969	0.35216	12.83046
47	0	5.29608	-0.19919	12.69348
48	0	1.8268	3.1641	5
49	0	5.4804	3.1641	5
50	0	0	6.3283	5
51	0	3.6536	6.3283	5
52	0	1.8268	9.4924	5
53	0	5.4804	9.4924	5
54	0	0	0	5
55	0	3.6536	0	5
56	0	-0.05077	4.25276	7.88085
	Ŭ			
57	0	3.685	4.20206	7.95261
57 58	0 0	3.685 1.84433	4.20206 7.33112	7.95261 7.84307
57 58 59	0 0 0	3.685 1.84433 5.48251	4.20206 7.33112 7.39366	7.95261 7.84307 8.06922
57 58 59 60	0 0 0 0	3.685 1.84433 5.48251 -0.02773	4.20206 7.33112 7.39366 10.62123	7.95261 7.84307 8.06922 8.05538
57 58 59 60 61	0 0 0 0 0	3.685 1.84433 5.48251 -0.02773 3.79409	4.20206 7.33112 7.39366 10.62123 10.48025	7.95261 7.84307 8.06922 8.05538 8.00487
57 58 59 60 61 62	0 0 0 0 0 0	3.685 1.84433 5.48251 -0.02773 3.79409 1.77362	4.20206 7.33112 7.39366 10.62123 10.48025 1.00563	7.95261 7.84307 8.06922 8.05538 8.00487 7.96793
57 58 59 60 61 62 63	0 0 0 0 0 0 0 0	3.685 1.84433 5.48251 -0.02773 3.79409 1.77362 5.45501	4.20206 7.33112 7.39366 10.62123 10.48025 1.00563 1.1337	7.95261 7.84307 8.06922 8.05538 8.00487 7.96793 7.85909
57 58 59 60 61 62 63 64	0 0 0 0 0 0 0 0 0	3.685 1.84433 5.48251 -0.02773 3.79409 1.77362 5.45501 -0.20725	4.20206 7.33112 7.39366 10.62123 10.48025 1.00563 1.1337 2.10997	7.95261 7.84307 8.06922 8.05538 8.00487 7.96793 7.85909 11.90872
57 58 59 60 61 62 63 64 65	0 0 0 0 0 0 0 0 0 0 0	3.685 1.84433 5.48251 -0.02773 3.79409 1.77362 5.45501 -0.20725 3.6445	4.20206 7.33112 7.39366 10.62123 10.48025 1.00563 1.1337 2.10997 1.95894	7.95261 7.84307 8.06922 8.05538 8.00487 7.96793 7.85909 11.90872 11.22348
57 58 59 60 61 62 63 64 65 66	0 0 0 0 0 0 0 0 0 0 0 0	3.685 1.84433 5.48251 -0.02773 3.79409 1.77362 5.45501 -0.20725 3.6445 5.52768	4.20206 7.33112 7.39366 10.62123 10.48025 1.00563 1.1337 2.10997 1.95894 5.55745	7.95261 7.84307 8.06922 8.05538 8.00487 7.96793 7.85909 11.90872 11.22348 10.91662
57 58 59 60 61 62 63 64 65 66 66 67	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3.685 1.84433 5.48251 -0.02773 3.79409 1.77362 5.45501 -0.20725 3.6445 5.52768 -0.26953	4.20206 7.33112 7.39366 10.62123 10.48025 1.00563 1.1337 2.10997 1.95894 5.55745 8.60163	7.95261 7.84307 8.06922 8.05538 8.00487 7.96793 7.85909 11.90872 11.22348 10.91662 10.78719
57 58 59 60 61 62 63 64 65 66 67 68	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3.685 1.84433 5.48251 -0.02773 3.79409 1.77362 5.45501 -0.20725 3.6445 5.52768 -0.26953 4.29868	4.20206 7.33112 7.39366 10.62123 10.48025 1.00563 1.1337 2.10997 1.95894 5.55745 8.60163 8.42339	7.95261 7.84307 8.06922 8.05538 8.00487 7.96793 7.85909 11.90872 11.22348 10.91662 10.78719 10.61817
57 58 59 60 61 62 63 64 65 66 67 68 69	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3.685 1.84433 5.48251 -0.02773 3.79409 1.77362 5.45501 -0.20725 3.6445 5.52768 -0.26953 4.29868 1.58148	4.20206 7.33112 7.39366 10.62123 10.48025 1.00563 1.1337 2.10997 1.95894 5.55745 8.60163 8.42339 11.60537	7.95261 7.84307 8.06922 8.05538 8.00487 7.96793 7.85909 11.90872 11.22348 10.91662 10.78719 10.61817 10.71386
57 58 59 60 61 62 63 64 65 66 67 68 68 69 70	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3.685 1.84433 5.48251 -0.02773 3.79409 1.77362 5.45501 -0.20725 3.6445 5.52768 -0.26953 4.29868 1.58148 5.60234	4.20206 7.33112 7.39366 10.62123 10.48025 1.00563 1.1337 2.10997 1.95894 5.55745 8.60163 8.42339 11.60537 11.0726	7.95261 7.84307 8.06922 8.05538 8.00487 7.96793 7.85909 11.90872 11.22348 10.91662 10.78719 10.61817 10.61817 10.71386 10.52505
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3.685 1.84433 5.48251 -0.02773 3.79409 1.77362 5.45501 -0.20725 3.6445 5.52768 -0.26953 4.29868 1.58148 5.60234 0.68867	4.20206 7.33112 7.39366 10.62123 10.48025 1.00563 1.1337 2.10997 1.95894 5.55745 8.60163 8.42339 11.60537 11.0726 0.66566	7.95261 7.84307 8.06922 8.05538 8.00487 7.96793 7.85909 11.90872 11.22348 10.91662 10.78719 10.61817 10.71386 10.52505 14.52902
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3.685 1.84433 5.48251 -0.02773 3.79409 1.77362 5.45501 -0.20725 3.6445 5.52768 -0.26953 4.29868 1.58148 5.60234 0.68867 3.09954	4.20206 7.33112 7.39366 10.62123 10.48025 1.00563 1.1337 2.10997 1.95894 5.55745 8.60163 8.42339 11.60537 11.0726 0.66566 0.66577	7.95261 7.84307 8.06922 8.05538 8.00487 7.96793 7.85909 11.90872 11.22348 10.91662 10.78719 10.61817 10.61817 10.71386 10.52505 14.52902 14.50747

74	Ni	-0.5159	2.67973	13.9448
75	Ni	1.93247	2.69932	14.29462
76	Ni	4.36137	2.68432	14.15648
77	Ni	0.69028	4.8111	13.83868
78	Ni	3.18512	4.77608	13.87559
79	Ni	5.59933	4.81357	14.06264
80	Ni	-0.5449	6.92586	14.33248
81	Ni	1.90857	6.87875	14.07078
82	Ni	4.33794	6.91293	14.35156
83	Ni	-0.5589	1.49592	16.31323
84	Ni	1.89005	1.49665	16.4608
85	Ni	4.33062	1.48074	16.35967
86	Ni	0.63271	3.59587	15.97922
87	Ni	3.14813	3.60165	16.05485
88	Ni	5.57083	3.55176	16.01148
89	Ni	0.68701	5.93791	16.02327
90	Ni	3.07522	5.94723	16.03817
91	Ni	5.53509	5.96459	16.21768
92	Ni	0.65587	2.62069	18.1512
93	Ni	3.11168	2.61108	18.19634
94	Ni	5.53831	2.61045	18.15419
95	Ni	-0.53072	4.68745	17.77054
96	Ni	1.88176	4.68527	17.75186
97	Ni	4.31098	4.69334	17.7922

298		
299	Refere	ences
300	1.	Z. Cheng, JH. Wang, Y. Choi, L. Yang, M. C. Lin and M. Liu, <i>Energy Environ. Sci.</i> , 2011, 4 , 4380, 4400
301	2	4380-4409.
302	2.	K. Sasaki, K. Susuki, A. Iyoshi, M. Uchimura, N. Imamura, H. Kusaba, Y. Teraoka, H.
303		Fuchino, K. Isujimoto, Y. Uchida and N. Jingo, J. Electrochem. Soc., 2006, 153 , A2023-
304	2	
305	J. ⊿	K. V. Hansen and M. Mogensen, <i>Electrochem. Solid-State Lett.</i> , 2012, 15 , B/O-B/1.
306	4.	M. Snishkin and T. Ziegier, J. Phys. Chem. C, 2009, 113 , 21667-21678.
307	5.	I. X. Green, W. J. Tang, M. Neurock and J. T. Yates, <i>Science</i> , 2011, 333 , 736-739.
308	6. -	S. Kurth, J. P. Perdew and P. Blaha, Int. J. Quantum Chem., 1999, 75 , 889-909.
309	7.	J. I. Martinez, H. A. Hansen, J. Rossmeisl and J. K. Nørskov, <i>Phys. Rev. B</i> , 2009, 79 ,
310		
311	8.	J. R. Kitchin, <i>Phys. Rev. B</i> , 2009, 79 , 205412.
312	9.	E. Skulason, V. Tripkovic, M. E. Bjorketun, S. d. Gudmundsdottir, G. Karlberg, J.
313		Rossmeisl, T. Bligaard, H. Jonsson and J. K. Nørskov, J. Phys. Chem. C, 2010, 114, 18182-
314		
315	10.	J. J. Mortensen, K. Kaasbjerg, S. L. Frederiksen, J. K. Nørskov, J. P. Sethna and K. W.
316		Jacobsen, <i>Phys. Rev. Lett.</i> , 2005, 95 , 216401.
317	11.	J. J. Mortensen, L. B. Hansen and K. W. Jacobsen, <i>Phys. Rev. B</i> , 2005, 71 , 035109.
318	12.	B. Hammer, L. B. Hansen and J. K. Nørskov, <i>Phys. Rev. B</i> , 1999, 59 , 7413-7421.
319	13.	A. B. Alchagirov, J. P. Perdew, J. C. Boettger, R. C. Albers and C. Fiolhais, <i>Phys. Rev. B</i> ,
320		2003, 67 , 026103.
321	14.	M. Shishkin and T. Ziegler, J. Phys. Chem. C, 2008, 112 , 19662-19669.
322	15.	K. Lee, E. D. Murray, L. Kong, B. I. Lundqvist and D. C. Langreth, Phys. Rev. B, 2010, 82,
323		081101.
324	16.	C. Kittel, Introduction to Solid State Physics, 8th edn., John Wiley & Sons, 2004.
325	17.	H. Jonsson, G. Mills and K. W. Jacobsen, <i>Classical and Quantum Dynamics in Consensed</i>
326		Phase Simulations, World Scientific, Singapore, 1998.
327	18.	G. Henkelman and H. Jonsson, J. Chem. Phys., 2000, 113 , 9978-9985.
328	19.	G. Henkelman, B. P. Uberuaga and H. Jonsson, J. Chem. Phys., 2000, 113 , 9901-9904.
329	20.	F. B. van Duijneveldt, J. G. C. M. van Duijneveldt-van de Rijdt and J. H. van Lenthe, <i>Chem</i>
330		<i>Rev,</i> 1994, 94 , 1873-1885.
331	21.	B. Paizs and S. Suhai, <i>J. Comput. Chem.</i> , 1998, 19 , 575-584.
332	22.	M. W. Chase, <i>NIST-JANAF Thermochemical Tables</i> , 4th edn., American Chemical Society,
333		Woodbury, N.Y., 1998.
334	23.	D. S. Monder and K. Karan, J. Phys. Chem. C, 2010, 114 , 22597-22602.
335	24.	J. Rossmeisl and W. G. Bessler, <i>Solid State Ionics</i> , 2008, 178 , 1694-1700.
336	25.	JH. Wang and M. Liu, <i>Electrochem. Commun.</i> , 2007, 9 , 2212-2217.
337	26.	D. R. Alfonso, Surf. Sci., 2008, 602, 2758-2768.
338	27.	E. J. Albenze and A. Shamsi, <i>Surf. Sci.</i> , 2006, 600 , 3202-3216.
339	28.	Y. M. Choi, C. Compson, M. C. Lin and M. Liu, <i>Chem. Phys. Lett.</i> , 2006, 421 , 179-183.
340		
341		