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Appendix A: Time-gated signals

Below we present the time gated signals correspond-
ing to the frequency gated expressions given in the main
text. We first read off the FDIR signal from the diagrams
similar to Egs. (9) - (10) and introduce the 7 - dispersed
signal in time domain analogues to Eq. (8)
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S(t,T;7) is the signal at time ¢ resulting from interac-
tion with & at time 7 — T. The signal is obtained by
integration over 7. The corresponding SRS signal reads
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Egs. (S4) - (S5) are analogue of (17) - (18).
The time-domain FDIR signals Eqs. (S2) -
be recast using SOS expansion
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that are analogues to Egs. (23) - (24). The corresponding
SRS signal reads
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For the ultrafast probe & (t —T) = E0(t — T') the 7 -
dispersed signal Eq. (S6) - (S7) then results in the full
signal (S1)
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The corresponding SRS signal reads
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Appendix B: Coupling to a classical bath

We assume that the system is coupled to a harmonic
bath. The molecule is represented by the Hamiltonian

H= Y |a)Halal + |a)Ha(a){al +|e)He(a)(el, (S1)

a=g,b

where Hg(q), 8 = a,c is an operator in the nuclear
Hilbert space, that is given by

H,(q) = Z & + ;mjw?(éj)%z] , (S2)
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where w;(g;) represents the time dependent frequency
profile of the isomerization process. Introducing the
dimensionless coordinate ¢; = (mjw;/h)Y/2G;, dis-
placement d; = (mjw;/h)'/?d; and momentum p; =
(mjw;h)/2p;, Egs. (S2) - (S3) read
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We next define the vibrational frequency Aw,. = hwt(l?;) +
% Zj d?wj (g;) and potential energy

Use = He = Hy — hwae = h Y _wj(gj)djq;.  (S6)
J

The dipole operator is given by

V=3 pawlo) (o], (57)

a,o’

where the summation runs over «, o’ = g, a, ¢, b, and o #
o’. Note that at this point we neglect any nuclear of the
dipole operators fiqqs (Condon approximation).
Following the definition of the frequency dispersed sig-
nal (6) we note that the angular brackets (...) in (6) now
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represent the average over the bath degrees of freedom.
Nuclear dynamics can be approximated by a combination
of classical dynamics and additional phases. Introducing
the reference Hamiltonian [S1]
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The Green’s function can then be recast with respect to

the reference Hamiltonian
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where the “+” subscript correspond to the positive time
ordering. We assume in Eq. (S1) the nuclear dynamics
occurs only in the singly excited manifold (states a and
¢). Therefore for a = a,b
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where
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Substituting this in Eqgs. (S2) - (S3) and (S4) - (S5) we
then get Eqgs. (36) and (37), respectively.

In the reduced description when we treat bath degrees
of freedom separately signals (9) - (10) and (17) - (18)
contain in principle two averaging operations. First is
averaging over statistical ensemble of classical trajecto-
ries (...).. For a fixed trajectory one has to evaluate the
average over the bath degrees of freedom (...);. In or-
der to evaluate the correlation function one has to con-
sider the microscopic stochastic dynamics of the nuclei.
For a fixed trajectory we evaluate the bath averaging
(U (1))p = hw,,s (1) and obtain Egs. (36) - (37). We
then note that the frequency averaging over trajectories
(Wyp (T))e = @Wypr. One can further add a harmonic fluc-
tuations around the mean value w,,» via cumulant expan-
sion. Note that for gaussian fluctuations this expansion
is same for all trajectories. We thus obtain
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Note that the linear term in expansion (S13) does not
depend on time (Uac(7)pg) = (Uacpg(7)) = (Uacpg(0))-



We further obtain the cumulant expansion by postulat-
ing that expansion (S13) can be written as exponenti-
ated in terms of power of U,.. Introducing the two-time
linewidth function

to T1
gac(tl,tg) = / dT1 / dTQCaC(TQ)7 (814)
tl t]

where Cue(12) = B 2(Uae(72)Uqe(0)py) represents the
spectral density that contains all the microscopic in-
formation necessary for calculating the optical response
functions within the second order cumulant approxima-
tion. We first note that C'(—t) = C*(t). We next sepa-
rate it into real and imaginary part C(t) = C'(t)+C"(¢).
Using the fluctuation-dissipation and detailed balance

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics
This journal is © The Owner Societies 2013

S3

theorem one may show that

C(w) = [1 4 coth(Bhw/2)]C" (w), (S15)
where C(w) = [7_dte™'C(t) and B8 = 1/kpT, with
the ambient temperature T, and Boltzmann constant kp.
For the continuous spectrum of harmonic fluctuations one
can use the overdamped Brownian oscillator model, i.e.

wA

C'w) = QAW,

(S16)
where A represents the reorganization energy and A cor-
responds to the fluctuation time scale. In this case the
linewidth function is given by Eq. (40).
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