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Appendix A: Time-gated signals

Below we present the time gated signals correspond-
ing to the frequency gated expressions given in the main
text. We first read off the FDIR signal from the diagrams
similar to Eqs. (9) - (10) and introduce the τ - dispersed
signal in time domain analogues to Eq. (8)

SIR(t, T ) = I
∫ t

−∞
dτE∗2 (t− T )E2(τ − T )S̃IR(t, T ; τ),

(S1)

where S̃IR(t, T ; τ) = S̃
(i)
IR(t, T ; τ) + S̃

(ii)
IR (t, T ; τ) where

S̃
(i)
IR(t, T ; τ) =

2

~

∫ t

−∞
dτ1

∫ τ

−∞
dτ5E∗1 (τ5)E1(τ1)

× 〈VeG†(τ, τ5)V †nG
†(t, τ)VnG(t, τ1)V †e 〉,

(S2)

S̃
(ii)
IR (t, T ; τ) =

2

~

∫ t

−∞
dτ1

∫ τ

−∞
dτ5E1(τ5)E∗1 (τ1)

× 〈VeG†(t, τ1)VnG(t, τ)V †nG(τ, τ5)V †e 〉.
(S3)

S̃(t, T ; τ) is the signal at time t resulting from interac-
tion with E2 at time τ − T . The signal is obtained by
integration over τ . The corresponding SRS signal reads

S̃
(i)
SRS(t, T ; τ) =

2

~

∫ t

−∞
dτ1

∫ τ3

−∞
dτ5E∗1 (τ5)E1(τ1)×

E3(t− T )E∗3 (τ − T )〈VeG†(τ, τ5)αnG
†(t, τ)αnG(t, τ1)V †e 〉,

(S4)

S̃
(ii)
SRS(t, , T ; τ) =

2

~

∫ t

−∞
dτ1

∫ τ3

−∞
dτ5E1(τ5)E∗1 (τ1)×

E3(t− T )E∗3 (τ − T )〈VeG†(t, τ1)αnG(t, τ)αnG(τ, τ5)V †e 〉.
(S5)
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Eqs. (S4) - (S5) are analogue of (17) - (18).
The time-domain FDIR signals Eqs. (S2) - (S3) can

be recast using SOS expansion

S̃
(i)
IR(t, T ; τ) =

2

~
θ(τ)θ(t)

∑
a,a′,d

µga′µ
∗
agµ
∗
a′dµad×

E∗1 (ωa′ + iγa′)E1(ωa − iγa)e−(iωad+γad)t+(iωa′d+γd−γa′ )τ .
(S6)

S̃
(ii)
IR (t, T ; τ) = −2

~
θ(τ)θ(t)

∑
a,a′,c

µga′µ
∗
agµ
∗
a′cµca×

E∗1 (ωa′ + iγa′)E1(ωa − iγa)e−(iωa′c+γa′c)t+(iωac+γc−γa)τ ,
(S7)

that are analogues to Eqs. (23) - (24). The corresponding
SRS signal reads

S
(i)
SRS(t, T ) = I 2i

~4
θ(τ)θ(t)

∑
a,a′,d

µga′µ
∗
agαa′dαad

× E∗1 (ωa′ + iγa′)E1(ωa − iγa)|E3|2

× e−iω3(t−τ)−(iωad+γad)t+(iωa′d+γd−γa′ )τ , (S8)

S
(ii)
SRS(t, T ) = −I 2i

~4
θ(τ)θ(t)

∑
a,a′,c

µga′µ
∗
agαa′cαca

× E∗1 (ωa′ + iγa′)E1(ωa − iγa)|E3|2

× e−iω3(t−τ)−(iωa′c+γa′c)t+(iωac+γc−γa)τ , (S9)

For the ultrafast probe E2(t− T ) = E2δ(t− T ) the τ -
dispersed signal Eq. (S6) - (S7) then results in the full
signal (S1)

SIR(t, T ) = I 2i

~4
θ(t)δ(t− T )

∑
a,a′

µga′µ
∗
ag|E1|2|E2|2

×

[∑
d

µ∗a′dµade
(iωa′a−γa′a)T −

∑
c

µ∗a′cµcae
(iωaa′−γaa′ )T

]
.

(S10)
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S2

The corresponding SRS signal reads

SSRS(t, T ) = I 2i

~4
θ(t)δ(t− T )

∑
a,a′

µga′µ
∗
ag|E1|2|E2|2|E3|2

×

[∑
d

αa′dαade
(iωa′a−γa′a)T −

∑
c

αa′cαcae
(iωaa′−γaa′ )T

]
.

(S11)

Appendix B: Coupling to a classical bath

We assume that the system is coupled to a harmonic
bath. The molecule is represented by the Hamiltonian

H =
∑
α=g,b

|α〉Hα〈α|+ |a〉Ha(q)〈a|+ |c〉Hc(q)〈c|, (S1)

where Hβ(q), β = a, c is an operator in the nuclear
Hilbert space, that is given by

Ha(q) =
∑
j

[
p̃2
j

2mj
+

1

2
mjω

2
j (q̃j)q̃

2
j

]
, (S2)

Hc(q) = ~ω(0)
ac +

∑
j

[
p̃2
j

2mj
+

1

2
mjω

2
j (q̃j)(q̃j + d̃j)

2

]
,

(S3)
where ωj(q̃j) represents the time dependent frequency
profile of the isomerization process. Introducing the
dimensionless coordinate qj = (mjωj/~)1/2q̃j , dis-

placement dj = (mjωj/~)1/2d̃j and momentum pj =

(mjωj~)1/2p̃j , Eqs. (S2) - (S3) read

Ha(q) =
1

2

∑
j

~ωj [p2
j + q2

j ], (S4)

Hc(q) = ~ω(0)
ac +

1

2

∑
j

~ωj [p2
j + (qj + dj)

2]. (S5)

We next define the vibrational frequency ~ωac = ~ω(0)
ac +

1
2

∑
j d

2
jωj(qj) and potential energy

Uac = Hc −Ha − ~ωac = ~
∑
j

ωj(qj)djqj . (S6)

The dipole operator is given by

V =
∑
α,α′

µαα′ |α〉〈α′|, (S7)

where the summation runs over α, α′ = g, a, c, b, and α 6=
α′. Note that at this point we neglect any nuclear of the
dipole operators µαα′ (Condon approximation).

Following the definition of the frequency dispersed sig-
nal (6) we note that the angular brackets 〈...〉 in (6) now

represent the average over the bath degrees of freedom.
Nuclear dynamics can be approximated by a combination
of classical dynamics and additional phases. Introducing
the reference Hamiltonian [S1]

Href (τ) =

{
Hg, if τ < τ1, τ5,

Ha, if τ ≥ τ1, τ5
(S8)

The Green’s function can then be recast with respect to
the reference Hamiltonian

Gα(t1, t2) = θ(t1 − t2) exp+

[
− i
~

∫ t1

t2

dτHref (τ)

]
× exp+

[
− i
~

∫ t1

t2

dτUα(τ)

]
, (S9)

where the “+” subscript correspond to the positive time
ordering. We assume in Eq. (S1) the nuclear dynamics
occurs only in the singly excited manifold (states a and
c). Therefore for α = a, b

Gα(t1, t2) = θ(t1 − t2)e−(iωα+γα)(t1−t2), (S10)

while

G†c(t, τ3) = θ(t− τ3)eiωa(t−τ3) exp−

[
i

~

∫ t

τ3

dτUac(τ)

]
,

(S11)
where

Uac(τ) = e
i
~Haτ [Hc −Ha − ~ωac]e−

i
~Haτ . (S12)

Substituting this in Eqs. (S2) - (S3) and (S4) - (S5) we
then get Eqs. (36) and (37), respectively.

In the reduced description when we treat bath degrees
of freedom separately signals (9) - (10) and (17) - (18)
contain in principle two averaging operations. First is
averaging over statistical ensemble of classical trajecto-
ries 〈...〉e. For a fixed trajectory one has to evaluate the
average over the bath degrees of freedom 〈...〉b. In or-
der to evaluate the correlation function one has to con-
sider the microscopic stochastic dynamics of the nuclei.
For a fixed trajectory we evaluate the bath averaging
〈Uνν′(τ)〉b = ~ωνν′(τ) and obtain Eqs. (36) - (37). We
then note that the frequency averaging over trajectories
〈ωνν′(τ)〉e = ω̄νν′ . One can further add a harmonic fluc-
tuations around the mean value ω̄νν′ via cumulant expan-
sion. Note that for gaussian fluctuations this expansion
is same for all trajectories. We thus obtain〈〈

exp−

(
i

~

∫ t

T

dτUac(τ)

)
ρg

〉
b

〉
e

= ei
∫ t
T
ω̄ac(τ)dτ×[

1 + T−
(
i

~

)2 ∫ t

T

dτ1

∫ τ1

T

dτ2〈Uac(τ1)Uac(τ2)ρg〉b + ...

]
(S13)

Note that the linear term in expansion (S13) does not
depend on time 〈Uac(τ)ρg〉 = 〈Uacρg(τ)〉 = 〈Uacρg(0)〉.
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We further obtain the cumulant expansion by postulat-
ing that expansion (S13) can be written as exponenti-
ated in terms of power of Uac. Introducing the two-time
linewidth function

gac(t1, t2) =

∫ t2

t1

dτ1

∫ τ1

t1

dτ2Cac(τ2), (S14)

where Cac(τ2) = ~−2〈Uac(τ2)Uac(0)ρg〉 represents the
spectral density that contains all the microscopic in-
formation necessary for calculating the optical response
functions within the second order cumulant approxima-
tion. We first note that C(−t) = C∗(t). We next sepa-
rate it into real and imaginary part C(t) = C ′(t)+C ′′(t).
Using the fluctuation-dissipation and detailed balance

theorem one may show that

C̃(ω) = [1 + coth(β~ω/2)]C̃ ′′(ω), (S15)

where C̃(ω) =
∫∞
−∞ dteiωtC(t) and β = 1/kBTa with

the ambient temperature Ta and Boltzmann constant kB .
For the continuous spectrum of harmonic fluctuations one
can use the overdamped Brownian oscillator model, i.e.

C̃ ′′(ω) = 2λ
ωΛ

ω2 + Λ2
, (S16)

where λ represents the reorganization energy and Λ cor-
responds to the fluctuation time scale. In this case the
linewidth function is given by Eq. (40).
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