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This section details the procedure used to obtain the energy
distribution functions from the experimental isotherms.
Being merely similar for both types of isotherms, the method
is detailed for the more general case of spectroscopic
isotherms. In essence, the method is a straightforward
extension of the method proposed by Wilson! to a 2-
dimensional case.

The spectroscopic isotherm (absorbances vs. pressure) is
expressed as:

Imax

a(,p) = f 0(p, 9)f (v, 9) dg M

Imin

where a(v,p) is the absorbance at wavenumber v and
pressure p, g is the reduced Gibbs free energy of adsorption
(g=—-InK =A,;,G/RT), and 6(p, g) is the functional
dependence which is expected to hold between pressure
and the coverage of surface sites. For a Langmuir isotherm:

0(,g) =1/(9+p/p°) (2)

f (v, g) is the function describing the energy distribution of
the adsorption sites leading to adsorbed species absorbing
at wavenumber v :

f(v,g)dg = N(g)e(v,g)/A (3)

where N(g) is the number of sites leading to a reduced
Gibbs free energy of adsorption between g and g +dg,
€(v, g) is the absorption coefficient of the corresponding
adsorbed species and A the geometric surface of the pellet.

In order to discretize Eqn (1), the spectroscopic isotherm
a(v,p) , the kernel function 6(p,g) and the energy
distribution function f (v, g) are represented by matrixes

which elements are given by :
a;j = a(vy,pj) i=1...m;j=1..,n

fei = Fvi gx)

The g gy values are linearly spaced in the interval
[gminr gmax] :
9k = Gmin + (kK — DAg
with Ag = (gmax — Gmin)/(@ — 1)
The left-hand side integral of Eq (1) is approximated by a
numerical quadrature, consisting in approximating the

integral by the weighted sum of the values of the function
under integral:

(5)

Imax q
| swormgdg=) monsa
Imin k=1

where the weighting coefficients wy, are given by :

_{Ag, 2<k<qg-1
Wi = ag/2, k=1,4q.

Discretization of equation (1) thus results in the following
system of linear algebraic equations :

()

a
a;; = z WO fri (8)

k=1
Denoting :
O = wi by (9)
the following matrix equation is obtained :
a=0f (10)

Denoting a; and f; the vectors of absorbance values a;; and

energy distribution function values f}; at the wavenumber

v;, this linear system could be solved with respect to f by

minimizing the residuals using a least-squares method, i.e.
by minimizing:

Bus(D) = ) 10, — a|”

: (11)

= Z(@ fi—a)"(0f; —a)

L

with the additional constraint that f is positive (f; = 0),
see Eqn 3.



However, because of the smoothness of the kernel ®, which
varies slowly with gy, this is a numerically ill-posed problem:
the optimum solutions f; are unstable with respect to slight
variations in the experimental data a; and may present
spurious oscillations.? 3 The usual procedure to tackle such
problems is the Tikhonov regularization and consists in
enforcing the smoothness of the solution by adding a
weighted constraint to the objective function to be
minimized:*

breg(£) = Prs(£) + 2 5(F) (12)

where 1 is the regularization parameter (4 = 0) which
controls the level of smoothing to be applied and S(f) is a
measure of the smoothness of f in the energy dimension.
Common choices for S(f) are the norm of f or the norm of its
second derivative with respect to g. In the present case,
both criteria led to similar solutions and the latter criterion
was chosen by approximating the second derivative by finite
differences and its norm was calculated by the numerical
quadrature:

S(f) = [10°f/ag%|I?
q+1

~ Z Z (foe—vi = 2fii + foerni) Ag/(Bg)* 13

i k=0
where f(_1); = foi = fqi = f(g+1i = 0. This choice enforces
the solution to be smoothed towards zero values at g,,in
and gmqx Which is appropriate for a distribution function.
With this choice, Eqn (13) can be expressed as a matrix
equation:

S = Y ISt (14)

where S is the symmetric matrix defined by:

6 —4 1 0 0 0
-4 6 -4 1 0 0
1|1 -4 6 -4 0 0
S =gy 1 -4 6 0 0
0 0 0 0 - 6 -4 /
0 0 0 0 -~ -4 6

Using equations (11) and (14), equation (12) becomes:
breg® = ) (Ofi —a)"(@F; —a) +AF]SK; (15
i

After expansion of and dropping the constant term, the
problem of minimizing ¢,.,4[f] amounts to solve the m
quadratic programming (QP) problems:

Dreglfi] = £,7 (070 + AS)f; — 2a! Of; (16)

with the non-negativity constraint, which can be solved by
most of numerical computational packages under its
standard form, i.e. minimize:

1
Qg (f;) = EfiTin +c'f; (17)
With Q = 2070 + 2AS and ¢ = —207a; subject to the
constraint f; > 0.

For the present study, the numerical calculations were
carried out with Matlab 7.10.0 using the quadprog routine to
solve the quadratic programming problem (Egn. 17).
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The inversion of the gravimetric isotherm was carried out
using the same procedure, with the exception that a (mass
changes) and f (distribution function) are vectors.
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