SUPPLEMENTARY INFORMATION

Ab initio and DFT analysis of the low-lying electronic states of metal dihalides:

Quantum chemical calculations on the neutral BrMCl (M=Cu, Ag, Au)

Michiko Atsumi,^a, Roland Lindh^a, Leticia González^b,

Christophe Gourlaouen^c, Chantal Daniel^c

 ^a Department of Chemistry, Quantum Chemistry - Ångström, the Theoretical Chemistry Programme, Uppsala University, Box 518, SE-751 20 Uppsala Sweden
 ^b Institut für Theoretische Chemie, Universität Wien Währinger Str. 17 A-1090 Vienna, Austria
 ^c Laboratoire de Chimie Quantique, Institut de ChimieUMR7177 CNRS-Université de Strasbourg
 4 Rue Blaise Pascal B. P. 1032 F-67070 Cedex Strasbourg France

Table S1. Electronic configuration and Mullliken charge distribution obtained for AgClBr at the HF level with different basis sets and ECPs.

		Mulliken Charge		
Basis set Label	Electronic configuration (² A')		Ag	Cl
ANO-RCC	$(3p_zCl)^2(4d\pi)^2 (4d\pi)^2 (4d\sigma)^2 (3p_yCl)^2 (4p_zBr)^2 (4p_yBr)^1$	0.1.6	0.59	-0.75
	$(3p_{x}Cl)^{2} (4d\pi)^{2} (4d\pi)^{2} (4p_{x}Br)^{2}$	0.16		
ANO-DK3	$(4d\sigma)^{2}(4d\pi)^{2}(4d\pi)^{2}(4p_{z}Br)^{2}(3p_{z}Cl)^{2}(3p_{y}Cl)^{2}(4p_{y}Br)^{1}$	0.21	0.66	-0.45
	$(4d\pi)^2 (4d\pi)^2 (4p_x Br)^2 (3p_x Cl)^2$	-0.21		
ANO-DK3-u	$(4d\sigma)^2 (4d\pi)^2 (4d\pi)^2 (4p_z Br)^2 (3p_z Cl)^2 (3p_y Cl)^2 (4p_y Br)^1$	0.12	0.58	-0.46
	$(4d\pi)^2 (4d\pi)^2 (4p_x Br)^2 (3p_x Cl)^2$	-0.12		
17e-	$(4d\sigma)^{2}(4d\pi)^{2}(4d\pi)^{2}(4p_{z}Br)^{2}(3p_{z}Cl)^{2}(3p_{y}Cl)^{2}(4p_{y}Br)^{1}$	0.04	0.37	-0.41
CG-AIMP	$(4d\pi)^2 (4d\pi)^2 (4p_x Br)^2 (3p_x Cl)^2$	0.04		
17e-	$(4d\pi)^2 (4d\pi)^2 (4d\sigma)^2 (3p_yCl)^2 (4p_zBr)^2 (4p_yBr)^2 (3p_zCl)^1$	0.20	0.77	-0.38
CG-AIMP-u	$(4d\pi)^2 (4d\pi)^2 (3p_xCl)^2 (4p_xBr)^2$	-0.39		
19e-	$(4d\pi)^2 (4d\sigma)^2 (4d\pi)^2 (4p_yBr)^2 (3p_zCl)^2 (3p_yCl)^2 (4p_zBr)^1$	0.02 0.47		0.5
NP-AIMP	$(4d\pi)^2 (4d\pi)^2 (4p_x Br)^2 (3p_x Cl)^2$	0.05	0.47	-0.3
19e-MWB	$(3p_zCl)^2 (4d\pi)^2 (4d\pi)^2 (d\sigma)^2 (3p_yCl)^2 (4p_zBr)^2 (4p_yBr)^1$	0.06	1.07	-1.01
	$(4d\pi)^2 (4d\pi)^2 (3p_xCl)^2 (4p_xBr)^2$	-0.00		
19e-LANL2DZ	$(4d\pi)^2 (d\sigma Cl)^2 (4d\pi)^2 (3p_yCl)^2 (4p_zBr)^2 (4p_yBr)^2 (3p_zCl)^1$	0.52	1.12	-0.59
	$(4d\pi)^2 (4d\pi)^2 (3p_xCl)^2 (4p_xBr)^2$	-0.55		
17e-	$(4d\sigma)^{2} (4d\pi)^{2} (4d\pi)^{2} (4p_{z}Br)^{2} (3p_{z}Cl)^{2} (3p_{y}Cl)^{2} (4p_{y}Br)^{1}$	0.07 0.26		0.42
NR-AIMP	$(4d\pi)^2 (4d\pi)^2 (4p_x Br)^2 (3p_x Cl)^2$	0.07	0.30	-0.43
17e-	$(4d\pi)^2 (4d\pi)^2 (4d\sigma)^2 (3p_yCl)^2 (4p_zBr)^2 (4p_yBr)^2 (3p_zCl)^1$			0.20
NR-AIMP-u	$(4d\pi)^2 (4d\pi)^2 (3p_xCl)^2 (4p_xBr)^2$	-0.35	0.71	-0.36

Table S2. Orbital contribution to the total mulliken charge and spin (in parenthesis) beard by the metal from ADF calculations (B3LYP/TZVP) for copper (n=4), silver (n=5) and gold (n=6)

	Cu	Ag	Au	
ns	0.37	0.48	0.14	
115	(-0.01)	(-0.02)	(-0.01)	
(n 1)d	0.47	0.27	0.59	
(11-1)u	(0.45)	(0.17)	(0.29)	
22	-0.37	-0.21	-0.24	
пр	(-0.02)	(-0.02)	(-0.02)	
Total	0.47	0.54	0.48	
10181	(0.42)	(0.13)	(0.27)	

Table S3. Relativistic orbital energies for copper (n=4), silver (n=5) and gold (n=6) in atomic units.

	Cu	Ag	Au
ns _{1/2}	-0.245	-0.237	-0.292
(n-1)d _{3/2}	-0.488	-0.526	-0.494
(n-1)d _{5/2}	-0.474	-0.501	-0.429

Table S4. CASPT2 Mulliken charge distribution of ClCuBr and ClAgBr neutral molecules

at the degeneracy of the ground state by CASPT2 level of theory.

	М		Cl		Br	
Cu		28.1		17.6		35.4
Ag		46.4		17.5		35.1
Au		78.5		17.3		35.2