Enhanced reverse saturable absorption in graphene/Ag₂S organic glasses

Supplementary Material

Qiuyun Ouyang, Xinpeng Di, Zhenyu Lei, Lihong Qi, Chunyan Li, Yujin Chen*

Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of

Science, Harbin Engineering University, Harbin 150001, China

^{*} Corresponding author. Tel/Fax: +86 451 82519754. E-mail address: chenyujin@hrbeu.edu.cn (Y. J. Chen).

NLA properties of Ag₂S, graphene, and G/Ag₂S solution in DMF

Fig. S1 shows the open-aperture Z-scan experimental data and theoretical curves (solid line) of Ag_2S , graphene, and G/Ag_2S solution in dimethylformamide (DMF). In the Z-scan measurements, to keep closer linear transmittance with the $(G/Ag_2S)_{7.8}$ /PMMA, we controlled the concentrations of Ag_2S , graphene, and G/Ag_2S solution in DMF to be 0.5 mg/mL, 0.03 mg/mL, and 0.08 mg/mL, respectively. The input energy was 66 μ J. It is obvious that the dip of the open-aperture Z-scan curve for the G/Ag_2S solution in DMF is the largest, suggesting that the G/Ag_2S solution in DMF exhibits the strongest nonlinear absorption properties.

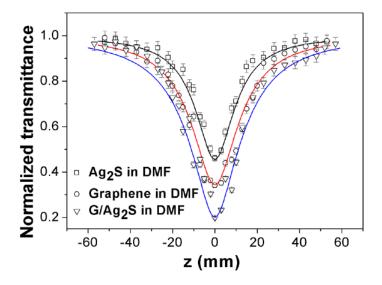


Fig. S1 (Color online) Comparison of open-aperture Z-scan curves among Ag₂S, graphene, and G/Ag₂S solution in DMF.

The values of linear transmittance T_0 , linear absorption α_0 at 532 nm, and effective nonlinear absorption (NLA) coefficient β_{eff} of Ag₂S, graphene, and G/Ag₂S solution in DMF were listed in Table S1. Though T_0 value of the G/Ag₂S (T_0 = 47.3%) solution in DMF is smaller than those of Ag₂S solution in DMF (T_0 = 52.8%) and

graphene solution in DMF ($T_0 = 55.9\%$), the β_{eff} value of the G/Ag₂S solution in DMF is approximately 5.0 and 2.9 times larger than those of Ag₂S solution in DMF and grapheme solution in DMF, respectively. The results above indicates that the G/Ag₂S solution in DMF exhibit enhanced NLA properties compared to Ag₂S solution in DMF and graphene solution in DMF.

Table S1 Comparison of linear transmittance T_0 , linear absorption coefficient α_0 at 532 nm, and nonlinear absorption coefficient β_{eff} among Ag₂S, graphene, and G/Ag₂S solution in DMF.

Samples	T_0 (%)	$\alpha_0 (\mathrm{cm}^{\text{-}1})$	β_{eff} (cm/GW)
Ag ₂ S in DMF	52.8	0.638	21.4
Graphene in DMF	55.9	0.582	37.5
G/Ag ₂ S in DMF	47.3	0.748	107

The concentration of Ag_2S solution in DMF, graphene solution in DMF, and G/Ag_2S solution in DMF are 0.5 mg/mL, 0.03 mg/mL, and 0.08 mg/mL, respectively.