# **Supporting Information to Accompany**

# Fluorescent Carboxylic and Phosphonic Acids: Comparative Photophysics from Solution to Organic Nanoparticles

Contribution from

CEISAM – UMR CNRS 6230, Université de Nantes, 2 rue de la Houssinière, BP 92208, 44 322 Nantes cedex 3, France elena.ishow@univ-nantes.fr

Adrien Faucon, Romaric Lenk, Julie Hémez, Eric Gautron, Denis Jacquemin, Jean-Yves Le Questel, Jérôme Graton, Arnaud Brosseau, and Eléna Ishow\*

### **Table of content**

- 1. Infrared spectra in CCl<sub>4</sub> solution
- 2. Infrared spectra in the solid state
- 3. DSC thermal analyses

#### **Experimental Section**

1. Infrared spectra in CCl<sub>4</sub> solution



**Fig. S1** Infrared absorption band of the CN unit, centered at 2220 cm<sup>-1</sup> for **fPOH** (\_\_\_) and **fPOEt** (\_\_\_) in CCl<sub>4</sub> solution  $(10^{-4} \text{ mol.L}^{-1})$ .



**Fig. S2** Infrared absorption band of the CN unit, centered at 2220 cm<sup>-1</sup> for **fPOH** (\_\_\_) and **fPOEt** (\_\_\_\_) in CHCl<sub>3</sub> solution  $(10^{-4} \text{ mol.L}^{-1})$ .



**Fig. S3** Infrared absorption band of the CN unit, centered at 2220 cm<sup>-1</sup> for **fPOH** (\_\_\_) and **fPOEt** (\_\_\_) in toluene solution  $(10^{-4} \text{ mol.L}^{-1})$ .



**Fig. S4** Infrared absorption band of the CN unit, centered at 2220 cm<sup>-1</sup> for  $fCO_2H$  (\_\_\_) and fOtBu (\_\_\_) in CHCl<sub>3</sub> solution (10<sup>-4</sup> mol.L<sup>-1</sup>).



**Fig. S5** Infrared absorption band of the CN unit, centered at 2220 cm<sup>-1</sup> for **fPOH** (\_\_\_) and **fPOEt** before (\_\_\_) and (\_\_\_) after adding 4-fluorophenol (4FP) in excess in  $CCl_4$  solution ( $10^{-4}$  mol.L<sup>-1</sup>). The spectrum resulting from the subtraction after and before adding 4FP to the solution of fPOEt (\_\_\_) is indicated and shows a neat bathochromic shift, featuring strong hydrogen bonding.

# 2. Infrared spectra in the solid state

Solid state spectra were recorded in the ATR mode using a FTIR Bruker Vertex 70 spectrometer.







•



# **3. DSC thermal analyses**

Thermal properties were measured by using differential scanning calorimetry (Netzsch- Maia DSC 200 F3) in alumina caps under a nitrogen flow at a scan rate of 30  $^{\circ}$ C.min<sup>-1</sup> over the temperature range [-10 $^{\circ}$ C - 250 $^{\circ}$ C]









Thermal gradient: blue curve 20  $^{\circ}$ C.min<sup>-1</sup>; pink curve : 30  $^{\circ}$ C.min<sup>-1</sup>.

2