Supplementary Information

Fine Tuning and Orientation Control of Surface Cu Complexes on TiO₂(110) Premodified with Mercaptobenzoate Molecules: Effect of Different Mercapto Group Positions

Satoru Takakusagi,¹* Hirotaka Nojima,¹ Hiroko Ariga,¹ Hiromitsu Uehara¹, Kotaro Miyazaki,¹ Wang-Jae Chun,² Yasuhiro Iwasawa,³ Kiyotaka Asakura¹*

¹Catalysis Research Center, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan,

² Department of Material Sciences, International Christian University, Mitaka, Tokyo 181-8585, Japan,

³ Department of Engineering Science, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan

*Corresponding authors

Supplementary information contains the following figures and tables.

Figure S1. Spectroscopic ellipsometry measurements of a typical mercaptobenzoic acid (MBA) layer on $TiO_2(110)$ (*o*-MBA/TiO₂(110)) and the *o*-MBA/TiO₂(110) sample after annealing at 200 °C for 1 h in UHV.

Figure S2. Cu K-edge XANES and EXAFS spectra of Cu/o-MBA/TiO₂(110) after exposure to air or after annealing at 200 °C for 1 h in UHV.

Figure S3~S5. Side and top views of the model structures for Cu/o-, *m*- and *p*-MBA/TiO₂(110), respectively. And their selected atomic coordinates used for theoretical calculation of the EXAFS oscillations are also shown in **Table S1~Table S3**.

Figure S1. Spectroscopic ellipsometry measurements (GES5E, Semilab) of a typical mercaptobenzoic acid (MBA) layer on TiO₂(110) (*o*-MBA/TiO₂(110)) and its thermal stability. (a) Ellipsometric angles Ψ and Δ for the *o*-MBA/TiO₂(110) (\odot) and the TiO₂(110) substrate (\times) collected at the incident light angle of 75° from the surface normal. (b) Thickness (*d*) determination of the *o*-MBA layer on TiO₂(110) by curve fitting using an optical model consisting of air/MBA layer/TiO₂(110) substrate. The refractive index (*n*) and the extinction coefficient (*k*) of the MBA layer were modeled using the Cauchy expression ($n(\lambda) = A + B/\lambda^2 + C/\lambda^4$, $k(\lambda) = 0$). We confirmed *k* was small enough in the wavelength range of 380-800 nm by UV-Vis absorption measurement of the MBA in ethanol solution. We fixed *C*=0 since its contribution was negligibly small, and the best-fitted result (solid line) was obtained when A=1.50, $B=0.05 \ \mu\text{m}^2$, and $d=0.85 \ nm$ which is in good agreement with the expected monolayer thickness shown in Figure 1 (~0.8 nm). Four measurements were taken at different locations on the sample surface and the obtained *d* values were reproducible within 0.15 nm. (c) Ellipsometric angles Ψ and Δ for the *o*-MBA/TiO₂(110) before (\circ) and after (\times) heating at 200°C for 1 h in UHV. No difference was observed before and after the heating, suggesting the MBA layer was thermally stable.

Figure S2. Cu K-edge XANES and EXAFS spectra of Cu/o-MBA/TiO₂(110) (a) after exposure to air for 10 min and then transfer back to the UHV chamber (E//[001]) or (b) after heating at 200 °C for 1 h in UHV (E//[001]). The red circles (\circ) show the XANES and EXAFS spectra before each treatment (the same spectra with those shown in Figure 2 (a) (XANES at E//[001]) and Figure 3 (a) (EXAFS at E//[001])). No significant difference was recognized before and after each treatment and Cu-S (0.219 nm) and Cu-O (0.185 nm) bonds were detected in the EXAFS spectra, suggesting the Cu species was stable after air exposure and heating at 200 °C in UHV.

Figure S3. (a) Side and (b) top views of the proposed model structure for Cu/o-MBA/TiO₂(110).

Figure S4. (a) Side and (b) top views of the proposed model structure for Cu/m-MBA/TiO₂(110).

Figure S5. (a) Side and (b) top views of the proposed model structure for Cu/p-MBA/TiO₂(110).

Atoms	X / Á	Y/Á	Z/Á
С	1.84	2.81	2.82
С	1.11	3.94	3.38
С	0.01	4.47	2.70
С	1.51	4.48	4.60
С	0.81	5.56	5.14
С	-0.68	5.55	3.24
С	-0.29	6.09	4.46
Cu	-0.33	3.02	-0.83
Н	2.37	4.06	5.13
Н	1.12	5.99	6.10
Н	-1.55	5.97	2.70
Н	-0.84	6.95	4.89
0	1.24	1.99	2.01
0	3.08	2.62	3.14
0	-0.13	2.20	-2.47
S	-0.59	3.88	1.18
Ti	4.46	0.99	2.49
Ti	2.04	0.16	1.01
Ti	-0.66	0.72	-3.72
Ti	1.76	1.55	-2.24

Table S1. Selected atomic coordinates used for theoretical calculation of the EXAFS oscillations for Cu/o-MBA/TiO₂(110).

Atoms	X / Á	Y/Á	Z/Å
С	2.87	3.09	-0.16
С	2.31	2.37	0.90
С	4.19	3.54	-0.08
С	4.95	3.26	1.06
С	3.07	2.09	2.04
С	4.39	2.54	2.11
С	2.48	1.32	3.17
Cu	1.90	1.80	-3.03
Н	4.63	4.10	-0.91
Н	5.99	3.61	1.12
Н	1.27	2.02	0.84
Н	5.00	2.32	3.01
0	1.90	0.34	-4.16
0	1.14	0.76	3.04
0	3.13	1.16	4.22
S	1.92	3.43	-1.57
Ti	1.82	-1.14	-2.82
Ti	0.94	-0.67	-5.60
Ti	0.31	-0.71	2.45

Table S2. Selected atomic coordinates used for theoretical calculation of the EXAFS oscillations for Cu/m-MBA/TiO₂(110).

Atoms	X / Á	Y/Á	Z/Å
С	1.46	2.64	0.71
С	2.33	1.67	1.23
С	0.52	3.24	1.55
С	0.45	2.88	2.90
С	2.26	1.31	2.57
С	1.32	1.92	3.41
С	1.25	1.54	4.85
Cu	1.90	1.79	-2.74
Н	-0.16	4.00	1.15
Н	-0.29	3.36	3.56
Н	3.07	1.19	0.57
Н	2.95	0.55	2.97
0	2.21	0.69	-4.26
0	2.10	0.54	5.50
0	0.36	2.16	5.46
S	1.55	3.08	-0.96
Ti	2.00	-1.11	-2.93
Ti	1.11	-0.64	-5.71
Ti	1.37	-1.15	5.12

Table S3. Selected atomic coordinates used for theoretical calculation of the EXAFS oscillations for Cu/p-MBA/TiO₂(110).