Supplementary Material for

Novel Insights on Magadiite Disaggregation: A multitechnique study on thermal stability

Juliana Martins de Souza e Silva,^{*a,b*} Geo Paul,^{*a*} James Bendall, ^{*c*} Chiara Bisio,^{*a*} Heloise O. Pastore,^{*b*} and Leonardo Marchese^{*a*}

Figure S1. ¹³C solid state variable contact time CPMAS NMR spectra of CTA-magadiite at a MAS rate of 10 kHz.

Figure S2. 2D ¹H-¹³C HETCOR (a) and ¹H-²⁹Si HETCOR (b) NMR spectra of CTA-magadiite along with 2D projections on the ¹³C and ²⁹Si dimensions. A MAS rate of 12240 Hz and a contact time of 0.3 ms and 2 ms was used in the ¹H-¹³C HETCOR and ¹H-²⁹Si HETCOR experiments, rwspectively. ¹H MAS NMR spectrum of CTA-magadiite is given in the ¹H dimension.

Figure S3. 2D ${}^{1}\text{H}{}^{-13}\text{C}$ HETCOR (a) and ${}^{1}\text{H}{}^{-29}\text{Si}$ HETCOR (b) NMR spectra of disaggregated magadiite along with 2D projections on the ${}^{13}\text{C}$ and ${}^{29}\text{Si}$ dimensions. A MAS rate of 12240 Hz and a contact time of 2 ms was used in the experiments. ${}^{1}\text{H}$ MAS NMR spectrum of disaggregated magadiite is given in the ${}^{1}\text{H}$ dimension.

Figure S4. ¹H-²⁹Si-¹H double CP spectra on CTA-magadiite (b) and disaggregated magadiite (d). The efficiency of the technique is demonstrated by comparing with the ¹H MAS NMR spectra of CTA-magadiite (a) and disaggregated magadiite (c) (see text for details).