Supplementary Information

Physisorption vs Chemisorption of Probe Molecules on Boron Nitride

Nanomaterials. Effect of Surface Curvature

Albert Rimola* and Mariona Sodupe

Departament de Química, Universitat Autònoma de Barcelona, 08193, Bellaterra,

Spain

E-mail corresponding author: albert.rimola@uab.cat

Table S1. Energy difference (ΔE , kJ mol⁻¹) of different (n,0) carbon and boron nitride nanotubes (CNT and BNNT, respectively) with respect to the corresponding single sheets. For CNTs, calculated per couple of C atoms; for BNNTs per B-N pair.

(n,0)	CNT ^a	BNNT
(4,0)	-	102.9
(5,0)	-	64.4
(6,0)	-	44.8
(7,0)	-	32.9
(9,0)	42.2	20.3
(12,0)	19.2	11.9
(15,0)	12.5	8.0
(18,0)	8.8	5.9
(21,0)	6.6	3.9
(24,0)	5.1	3.1

^a From R. Demichelis et al., J. Phys. Chem. C, 2011, 115, 8876-8885.

Table S2. BSSE-non-corrected (ΔE_{ads}) and corrected (ΔE_{ads}^{C}) computed adsorption energies (in kJ mol⁻¹) for the interaction of H₂O, NH₃, HCOOH, C₆H₆ and CH₄ with (4,0), (6,0), (9,0) and (15,0) BNNTs and a BNNS, at different levels of calculation (L1, L2 and L3).

System	$\Delta E_{ m ads}$			$\Delta E^{\rm C}_{\rm ads}$
-	L1	L2	L3	L3
$H_2O/BNNT(4,0)$	-59.4	-73.4	-65.7	-53.3
$H_2O/BNNT(6,0)$	-18.2	-32.2	-25.0	-16.9
H ₂ O/BNNT(9,0)	-13.3	-27.8	-22.0	-13.7
H ₂ O/BNNT(15,0)	-11.9	-25.3	-20.9	-12.7
H ₂ O/BNNS	-11.4	-25.5	-18.8	-11.4
NH ₃ /BNNT(4,0)	-108.3	-127.4	-122.2	-111.0
NH ₃ /BNNT(6,0)	-50.3	-70.9	-65.3	-54.5
NH ₃ /BNNT(9,0)	-16.3	-39.2	-34.2	-23.6
NH ₃ /BNNT(15,0)	-9.1	-23.5	-19.2	-16.0
NH ₃ /BNNS	-4.8	-22.1	-18.4	-14.7
HCOOH/BNNT(4,0)	-61.7	-89.0	-80.5	-71.2
HCOOH/BNNT(6,0)	-21.9	-43.8	-37.7	-31.8
HCOOH/BNNT(9,0)	-17.1	-39.4	-33.6	-27.0
HCOOH/BNNT(15,0)	-14.3	-37.0	-30.7	-25.3
HCOOH/BNNS	-11.5	-36.9	-30.9	-26.9
$C_6H_6/BNNT(4,0)$	-2.3	-38.4	-35.7	-30.4
C ₆ H ₆ /BNNT(6,0)	-2.5	-41.8	-37.8	-32.6
C ₆ H ₆ /BNNT(9,0)	-1.8	-46.0	-41.5	-36.2
C ₆ H ₆ /BNNT(15,0)	-1.4	-49.3	-44.2	-38.9
C ₆ H ₆ /BNNS	-2.1	-60.4	-52.9	-48.4
CH ₄ /BNNT(4,0)	-1.2	-13.4	-12.5	-9.9
CH ₄ /BNNT(6,0)	-0.5	-12.7	-12.3	-10.3
CH ₄ /BNNT(9,0)	-0.3	-13.9	-12.7	-10.7
CH ₄ /BNNT(15,0)	0.1	-14.4	-13.1	-11.1
CH ₄ /BNNS	0.0	-17.2	-15.9	-14.0

L1: B3LYP/6-311G(d,p)

L2: B3LYP-D*/6-311G(d,p)

L3: BN nanomaterials at B3LYP-D*/6-311G(d,p) and probe molecules at B3LYP-D*/TZP.

Figure S1. Optimized structures of H_2O interacting with the different BN nanomaterials computed at different levels: bare values at B3LYP/6-311G(d,p); values in parenthesis at B3LYP-D*/6-311G(d,p); values in brackets, the B and N atoms of the BN nanomaterials at B3LYP-D*/6-311G(d,p) and the atoms of H_2O at B3LYP-D* using a TZP basis set from the Ahlrichs and coworkers. Distances in Å.

Figure S2. Optimized structures of NH₃ interacting with the different BN nanomaterials computed at different levels: bare values at B3LYP/6-311G(d,p); values in parenthesis at B3LYP-D*/6-311G(d,p); values in brackets, the B and N atoms of the BN nanomaterials at B3LYP-D*/6-311G(d,p) and the atoms of NH₃ at B3LYP-D* using a TZP basis set from the Ahlrichs and coworkers. Distances in Å.

Figure S3. Optimized structures of HCOOH interacting with the different BN nanomaterials computed at different levels: bare values at B3LYP/6-311G(d,p); values in parenthesis at B3LYP-D*/6-311G(d,p); values in brackets, the B and N atoms of the BN nanomaterials at B3LYP-D*/6-311G(d,p) and the atoms of HCOOH at B3LYP-D* using a TZP basis set from the Ahlrichs and coworkers. Distances in Å.

Figure S4. Optimized structures of C_6H_6 interacting with the different BN nanomaterials computed at different levels: bare values at B3LYP/6-311G(d,p); values in parenthesis at B3LYP-D*/6-311G(d,p); values in brackets, the B and N atoms of the BN nanomaterials at B3LYP-D*/6-311G(d,p) and the atoms of C_6H_6 at B3LYP-D* using a TZP basis set from the Ahlrichs and coworkers. Distances in Å.

Figure S5. Optimized structures of CH₄ interacting with the different BN nanomaterials computed at different levels: bare values at B3LYP/6-311G(d,p); values in parenthesis at B3LYP-D*/6-311G(d,p); values in brackets, the B and N atoms of the BN nanomaterials at B3LYP-D*/6-311G(d,p) and the atoms of CH₄ at B3LYP-D* using a TZP basis set from the Ahlrichs and coworkers. Distances in Å.

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is C The Owner Societies 2013