Supplementary Information for

Oxidation-state dependent electrocatalytic activity of iridium nanoparticles supported on graphene nanosheets

Jun Ho Shim,^{*a,b,‡*} Ji Eon Kim,^{*a,‡*} Yun-Bin Cho,^{*a*} Chongmok Lee^{*a*} and Youngmi Lee^{**a*}

^aDepartment of Chemistry & Nano Science, Ewha Womans University, Seoul 120-750, Korea

^bDepartment of Chemistry, Daegu University, Gyeongsan 712-714, Korea

[‡]Authors equally contributed to this work.

*To whom all correspondence should be addressed: youngmilee@ewha.ac.kr

Tel: (+82) 2-3277-6652; Fax: (+82) 2-3277-2384

Fig. S1. Typical SEM images of (a) pRGO and (b) Ir NP/pRGO nanocomposites.

Fig. S2. Particle size distribution of the Ir nanoparticles immobilized on pRGO nanosheets.

Fig. S3. XPS spectra of (a) Ir NP/pRGO-air and (b) Ir NP/pRGO-H₂ for Ir 4f region.

•

Fig. S4. Comparison of (a) RDE voltammograms and (b) K-L plots (at +0.1 V vs. SCE) for ORR in an O₂-saturated 0.5 M H₂SO₄ solution at GC electrodes modified with Ir NP/pRGO-Ar, commercial Pt/C, and bulk Pt (disk electrode, Pt disk diameter = 3 mm). Rotation speed, 900 rpm and scan rate, 10 mV s⁻¹. Current densities (*J*) were obtained via the current normalization with respect to the corresponding electrode GSA, as determined by the CC method.

Fig. S5. RDE voltammograms for ORR in an O_2 -saturated 0.5 M H_2SO_4 solution at the Ir NP/pRGO-Ar-modified GC electrode depending on rotation speed with a scan rate of 10 mV s⁻¹.

Fig. S6. RDE voltammograms before and after repetitive 200 runs obtained with Ir NP/pRGO-Ar-modified GC electrode in an O_2 -saturated 0.5 M H_2SO_4 solution at a rotation rate of 1600 rpm. All the other conditions are the same as in Figure 5.