Supporting information

Band structure and Near infrared quantum cutting investigation of GdF₃:Yb³⁺, Ln³⁺ (Ln=Ho, Tm, Er, Pr, Tb) nanoparticles Linna Guo, Yuhua Wang*, Wei Zeng, Lei zhao and Lili Han

Department of Materials Science, School of Physical Science and Technology, Lanzhou University,

Lanzhou, 730000, People's Republic of China

* Corresponding author. Tel.:+86 931 8912772. Fax: +86 931 8913554.

E -mail address: wyh@lzu.edu.cn. (Y.H. Wang).

The ICP-AES results of a series of samples with different kinds of doping Ln^{3+} ions are shown in the following Table 1. It can be seen from the table that the molar ratio of Gd, Yb and Ho (Er /Tm/Pr/Tb) in GdF₃:10% Yb, 0.5% Ho (Er /Tm/Pr/Tb) is very close to the theoretical value.

Gd: 10%Yb: 0.5%Ln	Gd/Yb/Ho	Gd/Yb/Tm	Gd/Yb/Er	Gd/Yb/Pr	Gd/Yb/Tb
(Ln=Ho,Tm,Er,Pr,Tb)					
Measured Mass ratio	62.8%/6.81%/0.32%	50.75%/6.3%/0.25%	51.28%/6.31%/0.42%	52.19%/6.5%/0.279%	50.28%/6.35%/0.311%
Measured molar ratio	100:9.85:0.485	100:11.27:0.45	100:11.2:0.76	100:11.38:0.6	100:11.48:0.612
Theoretical molar ratio	100:11.17:0.56	100:11.17:0.56	100:11.17:0.56	100:11.17:0.56	100:11.17:0.56

Table 1 ICP-AES results of a series of samples with different kinds of doping Ln³⁺ ions

Fig. S1 shows SEM images of a series of samples with different concentrations of Yb^{3+} ions. It can be seen that the morphology and size hardly change with increasing Yb^{3+} concentration.

Fig. S1 SEM images of $GdF_3:0.5\%Ho^{3+},x\%Yb^{3+}$ ($0\le x\le 15$) nanoparticles: x=0 (a); x=5 (b); x-10 (c); x=15 (d)

The impurity contents of a series of $GdF_3:0.5\%Ho^{3+},x\%Yb^{3+}$ ($0\le x\le 15$) nanoparticles were characterized by Fourier-transform infrared (FT-IR) spectra, as shown in the following Fig. S2. It is found that the spectra shape of these samples with different concentrations of Yb^{3+} from 0 to 15% are nearly identical, and the absorption intensity of the surface contaminants OH groups (~3410cm⁻¹) and CO groups (~1641cm⁻¹) were measured to be the same basically with increasing concentrations of Yb^{3+} .

Fig. S2 FT-IR spectra of GdF₃: 0.5% Ho³⁺, x% Yb³⁺ ($0\le x\le 15$) nanoparticles

Fig.S3 shows decay curves of Ho^{3+} for ${}^{5}F_{5} \rightarrow {}^{5}I_{8}$ emission under excitation of 448 nm. It can be seen that the decay time of Ho^{3+} : ${}^{5}F_{5}$ state quickly decreases from 78.4µs to 6.2µs with the concentration of Yb³⁺ increasing from 0% to 20%.

Fig. S3 Decay curves of Ho³⁺ for ${}^{5}F_{5} \rightarrow {}^{5}I_{8}$ emission under excitation of 448 nm