

Surface Photovoltage Phase Spectra in Analysing Photogenerated Charge Transfer and Photocatalytic Activity of $\text{ZnFe}_2\text{O}_4\text{-TiO}_2$ Nanotube Arrays

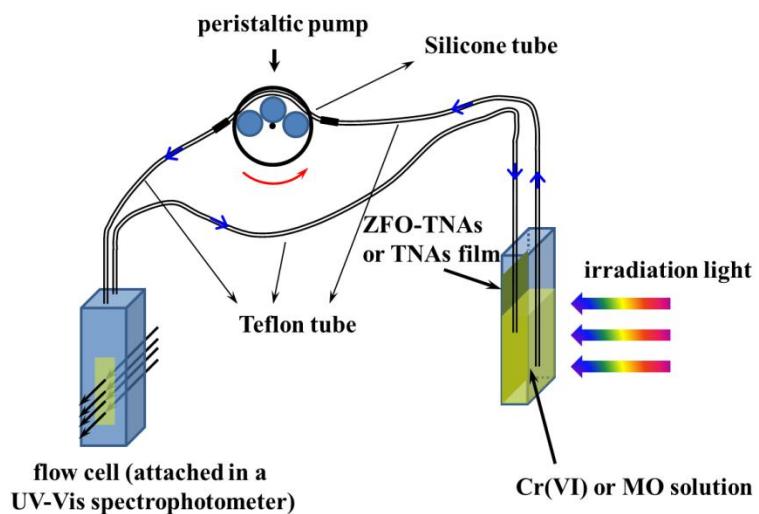
Liping Chen, Shuo Li, Zhipeng Liu, Yongchun Lu, Dejun Wang, Yanhong Lin and Tengfeng Xie*

College of Chemistry, Jilin University, Changchun 130012, People's Republic of China.

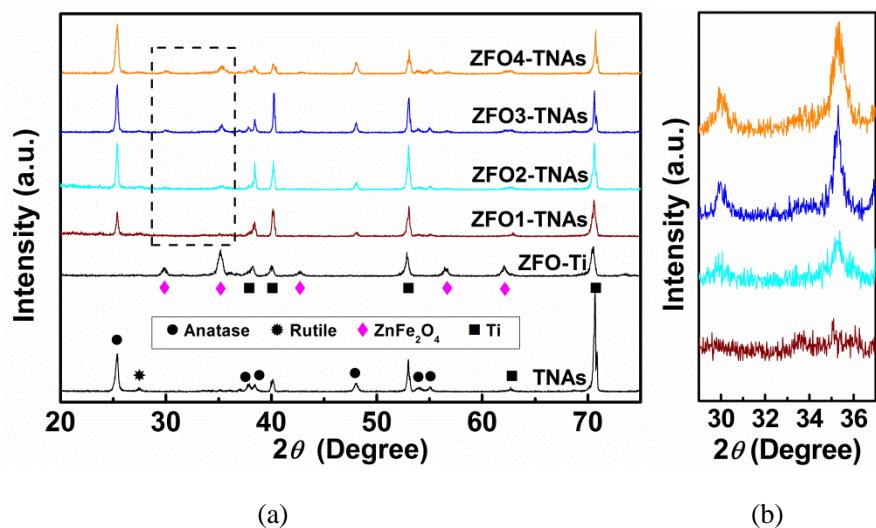
Supplementary Information

Synthesize different contents of ZnFe_2O_4 modified TNAs

For synthesizing different contents of ZnFe_2O_4 modified TNAs, the as-anodized TNAs were soaked in different concentration of $\text{Fe}(\text{NO}_3)_3$ and $\text{Zn}(\text{NO}_3)_2$ mixed solutions for 2 h. The concentration the mixed solutions are list in **Table S1**. Afterward the nanotube arrays were dried in air for 14 h and then annealed at 500 °C for 2 h with heating and cooling rates of 2 °C min⁻¹. Different samples were denoted as ZFO1-TNAs to ZFO4-TNAs.


Table S1. Concentration of $\text{Fe}(\text{NO}_3)_3$ and $\text{Zn}(\text{NO}_3)_2$ in mixed solutions for synthesizing different contents of ZnFe_2O_4 modified TNAs.

Sample	Fe(NO_3) ₃ Concentration /M	Zn(NO_3) ₂ Concentration /M	Denote as
1	0.250	0.125	ZFO1-TNAs
2	0.500	0.250	ZFO2-TNAs
3	1.000	0.500	ZFO3-TNAs
4	1.500	0.750	ZFO4-TNAs


Synthesize pure ZnFe_2O_4 loaded on Ti foil

For synthesizing pure ZnFe_2O_4 loaded on Ti foil, ammonia solution (25 wt.%) was added into 10 mL of $\text{Fe}(\text{NO}_3)_3$ and $\text{Zn}(\text{NO}_3)_2$ mixed solution (with the concentration of 1M and 0.5M, respectively) in drops under vigorous agitation until the mixed solution changed to pasty mixture.

After drying at 50 °C in air for 48 h, the yellow power was followed by annealing at 500 °C for 2 h with heating and cooling rates of 2 °C min⁻¹. Then the obtained ZnFe_2O_4 power was ultrasonically dispersed in ethanol and subsequently spread on a Ti foil (1cm × 2 cm). Finally the ZnFe_2O_4 loaded on Ti foil sample was obtained after drying at 50 °C for 10 min.

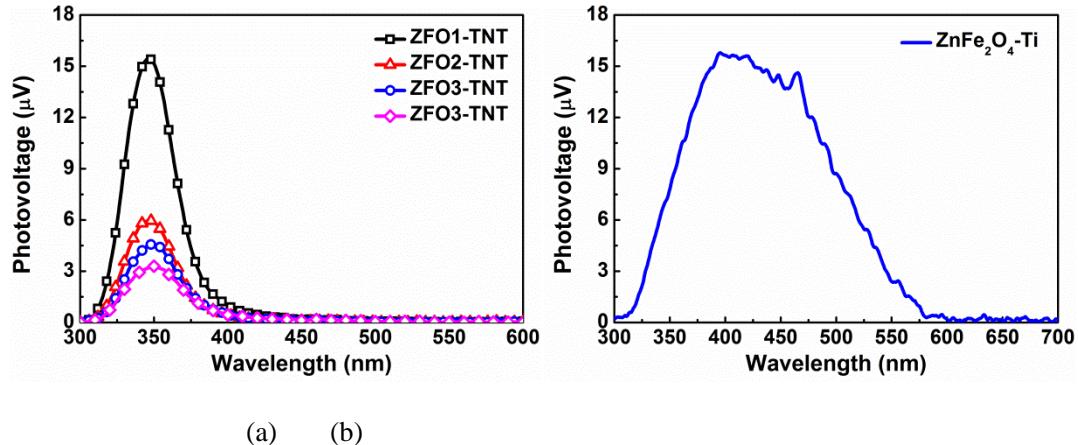


Fig. S1. Schematic diagram of on-line detection system for photo-catalytic reduction of Cr(VI) and degradation of MO solution.

Fig. S2. (a) XRD patterns of TNAs, pure ZnFe_2O_4 (loaded on Ti foil) and different contents of ZnFe_2O_4 modified TNAs; (b) magnified XRD patterns of the ZFO1-TNAs ~ ZFO4-TNAs at 2θ of 29° – 37° .

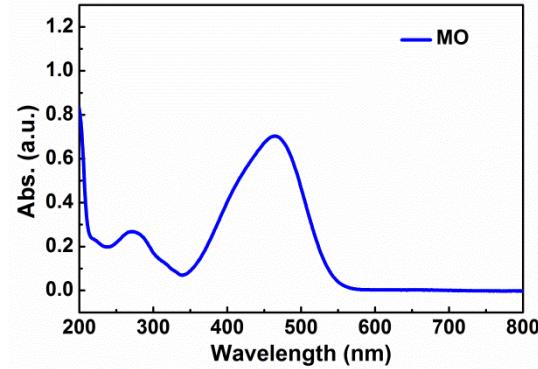

As the concentration of the $\text{Fe}(\text{NO}_3)_3$ and $\text{Zn}(\text{NO}_3)_2$ mixed solution increased in the soaking procedure, the content of ZnFe_2O_4 in the obtained ZFO-TNAs increased accordingly, which enhanced the strength of the diffraction peaks of ZnFe_2O_4 .

Fig. S3. SPV spectra of (a) different contents of ZnFe_2O_4 modified TNAs and (b) pure ZnFe_2O_4 (loaded on Ti foil).

When the content of ZnFe_2O_4 increases, the probability of the photo-generated charge carriers that excited from TiO_2 transferring to ZnFe_2O_4 and recombining in ZnFe_2O_4 increases too. As a result, the SPV responses decrease.

The pure ZnFe_2O_4 cannot be obtained via the same procedure as the synthesis of ZFO-TNAs, so a different scheme was adopted. That's the reason why the SPV response of ZnFe_2O_4 -Ti shows much stronger in the visible light region compared with those different ZnFe_2O_4 modified TNAs.

Fig. S4. Absorption spectrum of MO solution (10 mg L^{-1}).

When the cutoff filter ($\lambda > 400 \text{ nm}$) was used, only visible light can pass through and reach the MO solution. As shown in the schematic diagram of our on-line detection system (Fig. S1), the TNAs or ZFO-TNAs film was placed at the back of the MO solution. Due to the strong absorption of MO in the 400–550 nm region, the intensity of visible light in this region decreased rapidly before reaching TNAs or ZFO-TNAs film. This may be the reason why both the TNAs and ZFO-TNAs show no photocatalytic activity for the degradation of MO.