Supporting Information for

Facile synthesis of Pd-Ir bimetallic octapods and nanocages through galvanic replacement and co-reduction, and their use for hydrazine decomposition[‡]

Maochang Liu,^{ab} Yiqun Zheng,^c Shuifen Xie,^a Naixu Li,^a Ning Lu,^d Jinguo Wang,^d Moon J. Kim,^d Liejin Guo,^b and Younan Xia*^{ac}

^aThe Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States.

^bInternational Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China

^cSchool of Chemistry and Biochemistry, School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States

^dDepartment of Materials Science, University of Texas at Dallas, Richardson, Texas 75080, United States

*Corresponding author. E-mail: younan.xia@bme.gatech.edu

The H₂ selectivity of a catalyst

Generally, hydrazine can be decomposed to generate a mixture of N_2 and H_2 (Eq. 1) or a mixture of NH_3 and N_2 (Eq. 2). The overall reaction is expressed as Eq. (3). Since the reaction according to Eq. (2) does not generate H_2 , the H_2 selectivity, x, of a catalyst can be defined as the percentage of decomposition according to Eq. (1). When NH_3 is removed from the gas mixture, the H_2 selectivity can be calcualted from the amounts of N_2 and H_2 based on Eqs. (4) and (5).

$N_2H_4 = N_2 + 2H_2$	(1)
$N_2H_4 = N_2 + 2H_2$	(1

$$3N_2H_4 = 4NH_3 + N_2 \tag{2}$$

 $3N_2H_4 = 4(1-x)NH_3 + (1+2x)N_2 + 6xH_2$ (3)

$$n(N_2+H_2)/n(N_2H_4) = [(1+2x) + 6x]/3$$
(4)

$$x = [3n(N_2 + H_2)/n(N_2 H_4) - 1]/8 \times 100\%$$
(5)

Fig. S1 TEM images of Pd-Ir bimetallic nanostructures obtained at different stages of a standard synthesis: a) 0.5 h, b) 1 h, and c) 9 h. The scale bar applies to all images.

Fig. S2 High-resolution TEM images of the octapod and cage shown in Fig.2, c and d.

Fig. S3 X-ray photoelectron spectra (XPS) of Pd-Ir bimetallic nanostructures obtained at different stages of a standard synthesis: a) 1 h, b) 2 h, c) 9 h, and d) 24 h. Black and red curves correspond to elemental Pd and Ir, respectively.

Fig. S4 TEM images of Pd-Ir bimetallic nanostructures obtained using the standard procedure, except that the reaction temperature was set to a, b) 100 $^{\circ}$ C and c, d) 160 $^{\circ}$ C, respectively. The products were obtained at different stages of the syntheses: a, c) 2 h and b, d) 24 h.

Fig. S5 TEM images of Pd nanostructures obtained from a standard synthesis, in which no Ir precursor was added. The samples were obtained at different stages of the same synthesis: a) 2 h and b) 24 h, respectively.

Fig. S6 Catalytic decomposition of hydrazine monohydrate to generate H_2 in the presence of 14nm Pd-Ir nanocages as a catalyst.

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2013

Fig. S7 A plausible mechanism involved in the decomposition of N_2H_4 over a Pd-Ir alloyed nanocage.