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Experiment 

Table S1 The physical properties of sQAPSF and Nafion membranes under room 

temperature. 

Properties sQAPSF Nafion 

Functional group -N
+
(CH3)3OH

-
 -SO3H 

conductivity（σ, mS·cm
-1） 23.0 45.0 

Swelling ratio（%） 3.00 23.0 

IEC（mmol·g
-1） 1.34 0.90 

density (ρ, g·cm
-3

) 1.10 1.87 

 

The electrodes were made by a conventional thin hydrophilic electrode method 

consisting of painting a catalyst ink onto carbon paper. The ink for PEM (low-pH) 

electrode was prepared by mixing a Nafion solution (10 wt%), Pt/C catalyst (50 wt%, 

E-TEK), isopropyl alcohol, and pure water, while the ink for AEM (high-pH) 

electrode was a mixture of sQAPSF solution (2.0 wt%) and Pt/C catalyst (50 wt%, 

E-TEK). The inks were sonicated for 30 min and then cast onto Toray carbon paper 

(TGP-H-060) with gas diffusion layer and dried at 40 
o
C. The Pt loading for both 

PEM and AEM electrodes were 0.5 mg·cm
-2

. Then, the AEM electrodes were 

immersed in aqueous 1.0 M KOH solution to exchange Cl
-
 into OH

-
 in the alkaline 

ionomer. Finally, 50 μL of sQAPSF solution (2.0 wt%) was sprayed onto the AEM 

electrodes and dried at 40 
o
C for 30 minutes. The BPMFC MEAs were assembled into 

two steps. First, the PEM electrode was hot pressed with pretreated Nafion 212 

membrane at 135 
o
C and 4 MPa for 90 s. Then, the AEM electrode was pressed with 

as-synthesized MEA at room temperature and 4 MPa for 180 s. 
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Model description 

 

Scheme S1 Schematic of the bipolar membrane interface. 

Diffusion current density (idif) 

The wide of depletion region on each side in the interface 
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At the PEM/SCR boundary ( p px d  ), the concentration of hydroxide ions and 

its variation can be expressed as: 

 
P E M

e x p ( )O H p O H

q
c x c

k T


              (S2) 

   
P E M

O H p O H p O Hc x c x c              (S3) 

In the same way, the concentration of proton and its variation at the SCR/AEM 

boundary ( a ax d ) are: 

 
A E M

e x p ( )H a H

q
c x c

k T


              (S4) 
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The diffusion current density can be expressed as: 
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            (S6) 

where DH, DOH are the diffusion coefficients of proton and hydroxide ions in 

membranes, LH, LOH are the diffusion lengths. Moreover, the diffusion length L of 

H
+
/OH

-
 is determined by the decay time (τ) as L D . For the reaction (1) under 

the φeq, the rate of water formation ( 0 0 0

f f H O Hv k c c , kf is rate constant for water 

formation) is equal to the rate of water dissociation (
0

dv ). It assumed that the rate of 

water dissociation in the membranes hardly alters. Hence, 

0 0

d d fv v v                  (S7) 

Then the net reaction rate (v) can be expressed as: 

 
0 0

f d f H O H H O Hv v v k c c c c               (S8) 

with 
0

H H Hc c c   , 
0

O H O H O Hc c c    and H O Hc c    according to the 

eletroneutral conditions. Thus the Eq. S8 can be derived into: 

0 0
  ( )

O H

f H O H O H O H

c
v k c c c c




                (S9) 

with the decay time 
0 0

O H O Hτ= 1 ( )f Hk c c c   .  

In the PEM, as 0 0
,H O H O Hc c c   is valid, then the decay time of OH

-
 in PEM is: 
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P E M
0 P E M

1 1

f H f Hk c k c
                (S10) 

In the AEM 0 0
,O H H Hc c c   is valid, then the decay time of H

+
 in AEM is:  

A E M
0 A E M

1 1

f O H f O Hk c k c
                (S11) 

Therefore, the diffusion lengths are obtained. 

P E MO H O HL D  , 

A E MH HL D                 (S12) 

Then the diffusion current density in the BPM interface can be obtained by combining 

the Eq. S3,S5,S6 and S10~S12, yielding: 

P E M P E M A E M A E M
ex p 1d if f O H H O H H O H H

q
i F k D c c D c c

kT

            

    (S13) 

 

Fig. S1 Calculated diffusion current according to Eq. S13 with parameters in Table S1. 

Positive value for water formation and negative for water dissociation 
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Table S2 Parameters used for simulation 

Parameters Value Parameters Value 

q 1.60×10
-19 

C IECp 0.90 mmol·g
-1

 

k 1.38×10
-23 

J·K
-1

 IECa 1.34 mmol·g
-1

 

ε0 8.85×10
-14 

F·cm
-1

 ρp 1.87 g·cm
-3

 

NA 6.02×10
23 

mol
-1

 ρa 1.10 g·cm
-3

 

F 96485 C·mol
-1

 DH 
a
 1.20×10

-5 
cm

2
·s

-1
 

εr 35 
1
 DOH 

a
 6.13×10

-6 
cm

2
·s

-1
 

R 8.314 J·K
-1

·mol
-1

 P E M

Hc  1.00 mol·L
-1

 

∆G 79.89 kJ·mol
-1

 A E M

O Hc  1.00 mol·L
-1

 

T 298.15 K kf 
b
 8.00×10

15 
L·mol

-1
·s

-1
 

a 
The diffusion coefficient D was estimated using the conductivity (σ) of membranes 

through considering the molar conductivity (Λ) and the Einstein relationship. It 

expressed as 
kT

D
q cF

 . 

b
 The forward reaction constant kf was obtained by model fitting, which could be different with 

different membrane systems. 

Reaction current density (ireac) 
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Fig. S2 Energy diagram of the water formation/dissociation reaction. 

The forward and reverse reaction rates of reaction (1): 
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with Af, Ad are the pre-exponential factors. 

When the reaction system of reaction (1) is influenced by a potential difference 

of ∆ , the overall activation barriers and their dependence on the potential difference 

are derived based on the energy diagram shown in Fig. S2. Hence,  

'

f fE E q    , 

'
(1 )d dE E q                  (S15) 

where  is the symmetry factor (transfer coefficient). 

Then the reaction rate for forward and backward reactions and the net reaction rate are 

derived to be 
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In equilibrium, net reaction rate v is zero. That is, f dv v  

2

ln
f H O H

eq

d H O

R T k c c

F k c
               (S18) 

Under standard equilibrium potential, the 0e q  , thus 

2d H O f wk c k K                (S19) 

In the BPMFC, we can apply the interfacial overpotential, the activation overpotential 

  ( e q      ) rather than ∆. This is the “extra voltage” which drives the 

reaction current. In terms of overpotential, the reaction rate is 

2

( ) (1 ) ( )
ex p [ ] ex p [ ]

eq eq

f H O H d H O

F F
v k c c k c

R T R T

         
      (S20) 

Using Eq. S18, it yields 

2

2 2

1 (1 )
ex p [ ] ex p( ) ( ) [ ]

f H O H f H O H

f H O H d H O

d H O d H O

k c c F k c c F
v k c c k c

k c R T k c R T

      
    (S21) 

Then combining Eq. S19, Eq. S21 and e x p ( )H O H w

q
c c K

k T


  with the assumption for 

simplification that the water content in the BPM interface is saturated, thus 
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Therefore, 

(1 ) (1 )
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F F F
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0

(1 )
{ ex p ( ) ex p [ ]}rea c

F F
i i
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    with: 0

(1 )
e x p [ ]w f

F
i F d K k

R T

 
  

i.e. to the Eq. 2 in the main text. 

Simulation 

 

Fig. S3 (A) Polarization curves of a BPMFC by Ünlü et al.. 
1
 Cells comprised with a high-pH 

anode (△) or a high-pH cathode (◻) with a Nafion 212 membrane at 50 °C. Solid symbols 

correspond to the power density. (B) Model fitted polarization curves calculated with Eq. 2 by 

replacing the parameters of AEM properties and temperature in Table S2 with that applied by 

Ünlü et al.. In this case, the kf was estimated to be about 5.0×10
15 

L·mol
-1

·s
-1

.  
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