Supplementary Information

Reaction of Silylene with Sulfur Dioxide: Some Gas-Phase Kinetic and Theoretical Studies

Rosa Becerra, J. Pat Cannady, Nicola Goldberg and Robin Walsh

Microscopic reversibility (conversion of units and standard states)

This equation links kinetic and thermodynamic quantities for reversible reactions. It is often written: $\ln (A_1/A_{-1}) = \Delta S^{o}_{1,-1}/R$. This hides the complexity that, whereas $\Delta S^{o}_{1,-1}$ is referenced to the pressure standard state of 1 bar, rate constants such as A_1 are measured in concentration units, viz. cm³ molecule⁻¹ s⁻¹ in this case.

The easiest way to deal with this problem is to correct $\Delta S^{o}_{1,-1}$ from 1 bar (called ΔS^{o}_{p} below) to 1 mol dm⁻³(called ΔS^{o}_{c} below), via the equation^{1s}:

$$\Delta S^{o}_{p} = \Delta S^{o}_{c} + (\Delta n)R \times \ln R'T)$$

where R = 8.3145 J K⁻¹ mol⁻¹ and R' = 0.08206 bar dm³ mol⁻¹ K⁻¹. Note that the value of A_1 has to be converted from dm³ mol⁻¹ s⁻¹ to cm³ molecule⁻¹ s⁻¹.

Further Quantum Chemical calculations for SiH₂ + CO₂

Both G3 and G2 calculations were carried out on this system: G3 for comparison with those for SiH₂ + SO₂ system (main paper) and G2 for consistency with earlier calculations^{2s} on the SiH₂ + CO₂ reaction. The results are shown in Table S1 (below). It can be seen that the ΔH_{rel} values differ by no more than 6 kJ mol⁻¹, indicating reasonable agreement between the two levels of calculation. The new structures, ie of species not found earlier, are shown in Fig. S1.

cont. over page

Species	$G3^c$		G2	
	H(298 K)/ha	$\Delta H_{\rm rel}/{\rm kJ}~{\rm mol}^{-1}$	H(298 K)/ha	$\Delta H_{\rm rel}/{\rm kJ}~{\rm mol}^{-1}$
$SiH_2 + CO_2$	-478.950438	0	-478.521649^d	0
$SiH_2 \cdots CO_2$ (complex)	-478.955484	-13	-478.527461 ^d	-15
$H_2Si \stackrel{O}{}C$	-478.976467	-68	-478.545523 ^c	-63
(4-ring) Silovironono (3 ring)	478 080103	79	178 510586 ^d	73
H_{siO} (complex)	-478.980103	-78	-478.549380 478.554058 ^d	-73
$H_2SIO + CO$ (complex)	-478.979532	-76	-478.549824^d	-74
$\overline{\text{TS}}$: SiH ₂ ···CO ₂ to 4-ring	-478.916769	+88	-478.487316 ^c	+90
TS: SiH ₂ ···CO ₂ to 3-ring	-478.946281	+11	-478.517211^d	+12
TS: 3-ring to $H_2SiO\cdots CO$	-478.974552	-63	-478.543277^d	-57

Table S1 G3^{*a*} and G2^{*b*} calculated total enthalpies, *H*/hartree, and relative enthalpies, $\Delta H_{rel}/kJ$ mol⁻¹, for stationary points of interest on the H₂SiCO₂ energy surface

^{*a*} Full expression: G3//MP2=Full/6-31G(d) ^{*b*} Full expression: G2//MP2=Full/6-31G(d)

^{*c*} This work ^{*d*} ref. 2s

Fig. S1 Ouantum Chemical MP2=Full/6-31G(d) calculated geometries of

Fig. S1 Quantum Chemical MP2=Full/6-31G(d) calculated geometries of the cyclic fourmembered ring product of reaction of $SiH_2 + CO_2$ and its transition state for formation. Selected distances are given in Å and angles in degrees.

Note: fuller details of previous calculations on the $SiH_2 + CO_2$ are given in reference 2s.

References

- (1s) S. W.Benson, *Thermochemical Kinetics*, 2nd ed.; Wiley: New York, 1976, pp 8, 9.
- (2s) R. Becerra, J. P. Cannady and R. Walsh, J. Phys. Chem. A, 2002, 106, 4922.