Layer-by-layer Self-assembly and Disassembly of Single Charged

Inorganic Small Molecules: towards Surface Patterning

Mengjiao Cheng,^a Chao Jiang,^a Zhiyi Ding,^a Yajun Zhang,^a Yu Fu^b*and Feng Shi*^a

1. State Key Laboratory of Chemical Resource Engineering & Key Laboratory of

Carbon Fiber and Functional Polymer, Ministry of Education, Beijing University of

Chemical Technology, Beijing, 100029 (P. R. China)

E-mail: shi@mail.buct.edu.cn

2. College of Sciences, Northeastern University, Shenyang, 110004 (P. R. China)

E-mail: fuyu@mail.neu.edu.cn

1. UV-visible spectra of KAuCl₄ aqueous solution

Fig. S1. UV-visible spectrum of KAuCl₄ aqueous solution

The aqueous solution of KAuCl₄ (1 mg/mL) used in the layer-by-layer self-assembly is characterized with UV-visible spectrum, which shows a featured peak at 216.5 nm accompanied by a broad absorption at around 287 nm.

2. UV-visible spectra of KAuCl₄ aqueous solution and PDDA/KAuCl₄ mixed solution

UV-visible spectra were compared for KAuCl₄ aqueous solution and that mixed with PDDA aqueous solution with a mixing mole ratio of 1:1. As Fig. S2 displays, after mixing the PDDA/[AuCl₄]⁻ solution with a mole ratio of 1:1, the absorption at 287 nm disappears and the absorption at 216.5 nm shifts by 1 nm to 217.5 nm. This phenomenon assisted to prove the ligand-to-metal charge transfer occurred between PDDA and [AuCl₄]⁻. Note that PDDA aqueous solution showed on featured absorption peaks in the UV-visible range.

Fig. S2. UV-visible spectra of KAuCl₄ aqueous solution (black line) and PDDA/KAuCl₄ mixed solution (red line).