Supporting Information for

Core-Shell Catalysts Consisting of Nanoporous Cores for Oxygen Reduction Reaction

Minhua Shao,1,* Brandon H. Smith,1,† Sandra Guerrero,1 Lesia Protsailo,1 Dong Su,2 Keiichi Kaneko,3 Jonathan H. Odell,1 Michael P. Humbert,1‡ Kotaro Sasaki,4 Jesse Marzullo,1 Robert M. Darling1,‡

1UTC Power, 195 Governor’s Highway, South Windsor, CT 06074, United States

2Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, United States

3Toyota Motor Engineering & Manufacturing North America Inc., Ann Arbor, Michigan 48105 United States

4Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973, United States

†Current address: The Pennsylvania State University, University Park, Pennsylvania, 16802, United States

‡Current address: United Technologies Research Center, East Hartford, CT 06108, United States

*Minhua@gmail.com

Tel: (+1) 860-727-7251
Figure S1. HAADF-STEM images of dealloyed Pd-Ni/C (d-PdNi/C) with a nanoporous structure.
Figure S2. A single d-PdNi particle in sample 3: HAADF-STEM image (A) and 2D EELS mapping (B).
Figure S3. Fourier transformed EXAFS of the data (red) and first-shell fit (dotted blue) of (a) Ni K and (b) Pd K edges from the as-synthesized sample.
The number of repeated cell units $N > N'$

Figure S4. Illustrations of porous and solid particles. The intensity (reverse of broadness) of a XRD peak depends on the number of repeated cell units (N) in one direction (a) in the crystal (p.6 in prism.mit.edu/xray/CrystalSizeAnalysis.ppt):

$$I = I_e F^2 \frac{\sin^2(\pi/\lambda)(s-s_o) \cdot N_i a_i \cdot \sin^2(\pi/\lambda)(s-s_o) \cdot N_2 a_2 \cdot \sin^2(\pi/\lambda)(s-s_o) \cdot N_3 a_3}{\sin^2(\pi/\lambda)(s-s_o) \cdot a_1 \cdot \sin^2(\pi/\lambda)(s-s_o) \cdot a_2 \cdot \sin^2(\pi/\lambda)(s-s_o) \cdot a_3}$$

The larger the number N, the higher the intensity (narrower of the XRD peak). For a porous particle, the number of the repeated unit cells (N') is smaller than that a solid particle with a similar overall particle size, resulting in a smaller crystallite size using Scherrer equation.
Figure S5. TEM image of sample 3 after first stage of dealloying in 1 M HNO₃ at 60°C for 1 hr. Porous structure was seen in some of the particles.