## **Supplementary Information**

**Figure S-1.** IRMPD of the  $d_4$ -homodimers of 1-methylcytosine and of 1-methyl- $d_3$ -cytosine Figure S-2. IRMPD spectra of 1 compared with peaks predicted using Gaussian09<sup>a</sup> Table S-1. IRMPD band positions and assignments for 1<sup>a,b</sup> Figure S-3. IRMPD spectra of 2 compared with peaks predicted using Gaussian09<sup>a</sup> Table S-2. IRMPD band positions and assignments for 2<sup>a,b</sup> Figure S-4. IRMPD spectra of 3 compared with peaks predicted using Gaussian09<sup>a</sup> Table S-3. IRMPD band positions and assignments for 3<sup>a,b</sup> Figure S-5. IRMPD spectra of 6 compared with peaks predicted using Gaussian09<sup>a</sup> Table S-4. IRMPD band positions and assignments for 6<sup>a,b</sup> Figure S-6. IRMPD spectra of 4 compared with peaks predicted using Gaussian09<sup>a</sup> Table S-5. IRMPD band positions and assignments for 4<sup>a,b</sup> Figure S-7. IRMPD spectra of 5 compared with peaks predicted using Gaussian09<sup>a</sup> Table S-6. IRMPD band positions and assignments for 5<sup>a,b</sup> Figure S-8. Comparison of IRMPD spectra of heterodimers 4 and 5, 2800-3600 cm<sup>-1</sup> Figure S-9. Solid state <sup>1</sup>H spectrum (600 MHz) of the iodide salt of 1 Figure S-10. Solid state <sup>13</sup>C spectrum (100.6 MHz) of the iodide salt of 1 compared with theory<sup>a</sup> Figure S-11. Solid state <sup>15</sup>N spectrum (40.5 MHz) of the iodide salt of 1 compared with theory <sup>a</sup>. Figure S-12. Single crystal IR of the iodide salt of 1 vs the IRMPD of gaseous 1 Figure S-13. Powder IR of two crystal habits of the iodide salt of 1 Figure S-14. Comparison of IR spectra of the iodide salt of 1 with its deuterium-exchanged isotopomer

<sup>a</sup> Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.

<sup>b</sup> SBS= small basis set (B3LYP/6-31G\*\*); LBS=large basis set (B3LYP/6-311++G\*\*)



Figure S1: Comparison of the IRMPD spectrum of the  $d_4$ -homodimer of 1methylcytosine (1- $d_4$ , panel A) with that of the  $d_4$ -homodimer of 1-methyl- $d_3$ cytosine (panel B), demonstrating that the strong band near 3000 cm<sup>-1</sup> comes from methyl CH stretching vibrations.



Figure S2: Comparison of scaled and unscaled harmonic and anharmonic calculated spectra of 1-methylcytosine proton-bound dimer (1) vs experimental IRMPD spectra of 1-methylcytosine proton-bound dimer (in silhouette). [19]

| Evot | SBS          | SBS          | L BS Scalad  | IBS          |                                         |
|------|--------------|--------------|--------------|--------------|-----------------------------------------|
| band | Harmonic     | Anharmonic   | Harmonic     | Anharmonic   | Assignment                              |
|      |              |              |              |              | C=O stretch & in-plane NH               |
| 1/58 | 1763         | 1776         | 1739         | 1754         | bend                                    |
| 1682 | 1697         | 1707         | 1677         | 1683         | NH in-plane bends                       |
|      | 1677         | 1690         | 1653         | 1665         | C=O stretch                             |
| 1661 | 1662         | 1704         | 1643         | 1671         | NH in-plane bends                       |
|      | 1634         | 1639         | 1618         | 1624         | C=C &C-NH <sub>2</sub> stretches        |
| 1606 | 1613<br>1610 | 1624<br>1618 | 1595<br>1585 | 1604<br>1584 | NH in-plane bends & CO<br>stretch       |
| 1567 |              |              |              |              |                                         |
| 1531 | 1539         | 1548         | 1526         | 1536         | C=N stretch & HCH bends                 |
|      | 1529         | 1538         | 1515         | 1521         | C=C stretch & HCH bends                 |
| 1485 | 1490<br>1477 | 1497<br>1486 | 1473<br>1466 | 1479<br>1491 | HCH & NH in-plane bends                 |
| 1426 | 1430         | 1459         | 1420         | 1444         | methyl HCH bends                        |
| 1386 | 1394         | 1410         | 1384         | 1393         | CH <sub>3</sub> umbrella, in-plane ring |
|      | 1383         | 1399         | 1371         | 1385         | CH bends                                |
| 1329 | 1330<br>1324 | 1344<br>1341 | 1321<br>1314 | 1332<br>1329 | ring CH in-plane bends                  |
| 1257 | 1265         | 1264         | 1245         | 1246         | N-CO stretches                          |
|      | 1248         | 1251         | 1227         | 1229         |                                         |
| 1194 | 1197         | 1205         | 1189         | 1199         | ring CH in-plane bends                  |
|      | 1187         | 1203         | 1179         | 1188         |                                         |
| 1152 | 1149<br>1146 | 1168<br>1164 | 1143<br>1140 | 1155<br>1156 | HC=CH in-plane bends                    |
|      | 1119         | 1134         | 1114         | 1129         | CH₃ umbrella, HNH                       |
| 1128 | 1118         | 1132         | 1113         | 1123         | in-plane rocking                        |
|      | 1108         | 1145         | 1104         | 1119         |                                         |
|      | 1042         | 1055         | 1037         | 1050         |                                         |
| 1040 | 1038         | 1050         | 1034         | 1044         | N-H-N out-of-plane bend                 |
|      | 1026         | 1046         | 999          | 1036         | CH <sub>3</sub> rocking                 |

Table S1: Comparison of calculated bands and experimental IRMPD bands for 1-methylcytosine proton-bound homodimer (1). [19]



Figure S3: Comparison of scaled and unscaled harmonic and anharmonic calculated spectra of 5-fluoro-1-methylcytosine proton-bound homodimer (**2**) *vs* experimental IRMPD spectra of 1-methylcytosine proton-bound dimer (in silhouette). [19]

|       | SBS      |            | LBS      |            |                                      |
|-------|----------|------------|----------|------------|--------------------------------------|
| Expti | Scaled   | SBS        | Scaled   | LBS        | Accienment                           |
| Danu  | Harmonic | Annarmonic | Harmonic | Annarmonic | C=O stretch & in_plane NH            |
| 1752  | 1761     | 1774       | 1738     | 1751       | bend                                 |
| 1102  |          |            |          |            | C-NH <sub>2</sub> stretch and HNH    |
| 1694  | 1699     | 1713       | 1678     | 1688       | i.p. bends                           |
|       | 1682     | 1689       | 1659     | 1674       | C=C stretch, NHN ip bend             |
|       | 1671     | 1686       | 1647     | 1661       |                                      |
|       |          |            |          |            | C=C stretch, NHN i.p.                |
| 1630  | 1649     | 1659       | 1631     | 1639       | bend, HNH i.p. bend                  |
| 4000  | 4004     | 4644       | 4000     | 4000       | C=C stretch, NHN I.p.                |
| 1620  | 1634     | 1641       | 1620     | 1629       | Dend, HNH I.p. bend                  |
| 1615  | 1602     | 1597       | 1580     | 1582       | bends NHN in bend                    |
| 1585  | 1002     | 1557       | 1300     | 1302       | bends, Nini i.p. bend                |
| 1000  |          |            |          |            | NHN ip bend HNH i p.                 |
| 1550  | 1544     | 1555       | 1531     | 1539       | bend, non C=C ring                   |
|       | 1531     | 1546       | 1517     | 1525       | stretches                            |
|       |          |            |          |            | HCH, HNH, NHN bends,                 |
| 1500  | 1507     | 1515       | 1487     | 1495       | N-C ring stretches                   |
|       | 1484     | 1478       | 1468     | 1476       |                                      |
| 1428  | 1439     | 1439       | 1429     | 1435       | HCH bends                            |
|       | 1439     | 1446       | 1429     | 1447       |                                      |
| 1000  | 4070     | 1070       | 1050     | 1000       | non C=C ring stretches,              |
| 1366  | 1372     | 1379       | 1309     | 1365       | CH <sub>3</sub> umbrella             |
|       | 1299     | 1309       | 1290     | 1305       | C=CH in plane bends                  |
|       | 1200     | 1000       | 12.50    | 1000       | HNH in-plane bend N-CO-              |
| 1293  | 1294     | 1308       | 1283     | 1307       | Nring                                |
|       | 1293     | 1307       | 1271     | 1282       | stretches, C-F stretch               |
|       | 1288     | 1298       | 1266     | 1271       |                                      |
|       |          |            |          |            | N-CO-N ring stretch, HNH             |
| 1213  | 1225     | 1234       | 1204     | 1212       | i.p. bend, C-F                       |
|       | 1212     | 1010       | 1100     | 1105       | stretch, C=CH in-plane               |
| 11/2  | 1/212    | 1213       | 1190     | 1190       | UNU NUN C-CU bende                   |
| 1143  | 1134     | 1132       | 1127     | 1128       | N-CH <sub>2</sub> stretch            |
| 1123  | 1118     | 1132       | 1113     | 1125       | HCH torsions                         |
|       | 1117     | 1127       | 1112     | 1126       |                                      |
|       |          |            |          |            | NHN, HNH,C=CH in-plane               |
| 1108  | 1107     | 1114       | 1104     | 1106       | bends                                |
|       | 1091     | 1096       | 1086     | 1094       | CH <sub>3</sub> rock                 |
|       |          |            |          |            | CH <sub>3</sub> rock, HNH i.p. bend, |
| 1049  | 1051     | 1058       | 1043     | 1050       | N-CH ring                            |
|       | 40.47    | 1050       | 4000     | 40.40      | stretches NHN, HNH                   |
|       | 1047     | 1058       | 1038     | 1046       | o.o.p. bends                         |
|       | 1030     | 1047       | 994      | 1041       |                                      |

Table S2: Comparison of calculated bands and experimental IRMPD bands for 5-fluoro-1-methylcytosine proton-bound homodimer (**2**). [19]



Figure S4: Comparison of scaled and unscaled harmonic and anharmonic calculated spectra of 1,5-dimethylcytosine proton-bound homodimer (**3**) *vs* experimental IRMPD spectra of 1-methylcytosine proton-bound dimer (in silhouette). [19]

| Exptl<br>band | SBS Scaled<br>Harmonic | SBS<br>Anharmonic | LBS Scaled<br>Harmonic | Assignment                                            |
|---------------|------------------------|-------------------|------------------------|-------------------------------------------------------|
| 1752          | 1760                   | 1775              | 1735                   | C=O stretch & in-plane NH bend                        |
| 1679          | 1693                   | 1706              | 1675                   | C-NH <sub>2</sub> , C=O, C=C stretches                |
|               | 1674                   | 1692              | 1649                   | NH <sub>2</sub> scissoring & N-H                      |
|               | 1668                   | 1730              | 1647                   | in-plane bends                                        |
| 1606          | 1606                   | 1605              |                        | C=C stretch & NH scissoring                           |
| 1563          |                        |                   | 1578                   | C=C stretch & NH scissoring                           |
| 1533          | 1528                   | 1535              | 1517                   | ring C-C & C-N stretch,                               |
|               | 1513                   | 1523              | 1501                   | N-H and C-H rocking                                   |
| 1482          | 1491                   | 1495              | 1472                   | C-NH <sub>2</sub> , ring C-N stretches, &             |
|               | 1477                   | 1483              | 1466                   | NH <sub>2</sub> scissoring                            |
|               | 1473                   | 1471              | 1462                   | HCH, HNH, NHN bends,                                  |
|               | 1472                   | 1476              | 1461                   |                                                       |
|               | 1464                   | 1490              | 1448                   | C-NH <sub>2</sub> stretch                             |
| 1457          | 1462                   | 1482              | 1447                   | HCH, HNH, NHN bends,                                  |
|               | 1450                   | 1481              | 1440                   | methyl torsions                                       |
|               | 1450                   | 1468              | 1439                   |                                                       |
|               | 1440                   | 1426              | 1430                   | HCH scissoring                                        |
| 1432          | 1439                   | 1429              | 1430                   |                                                       |
|               | 1431                   | 1447              | 1423                   | CH <sub>3</sub> umbrella motions                      |
|               | 1429                   | 1449              | 1421                   |                                                       |
| 1390          | 1394                   | 1425              | 1385                   | CH <sub>3</sub> umbrella motions                      |
|               | 1392                   | 1425              | 1383                   |                                                       |
| 1362          | 1367                   | 1374              | 1355                   | Ring C-N stretches &                                  |
|               | 1362                   | 1371              | 1351                   | CH <sub>3</sub> umbrella motions                      |
| 1330          | 1332                   | 1334              | 1322                   | C=C-H bends                                           |
|               | 1325                   | 1331              | 1314                   | C-N ring stretches                                    |
| 1279          | 1279                   | 1284              | 1262                   | Ring N-CO & N-CN stretches                            |
| L             | 1263                   | 1273              | 1249                   |                                                       |
| 1157          | 1150                   | 1161              | 1143                   | C=C-H bends & N-CH <sub>3</sub> stretch               |
| 1142          | 1144                   | 1151              | 1136                   | C=C-H bends & N-CH <sub>3</sub> stretch               |
| 1109          | 1119                   | 1117              | 1113                   | N-CH <sub>3</sub> rocking                             |
|               | 1118                   | 1116              | 1112                   |                                                       |
| L             | 1109                   | 1135              | 1104                   | H-N-H rocking                                         |
|               | 1051                   | 1057              | 1043                   | H-N-H rocking,                                        |
| 1051          | 1045                   | 1053              | 1036                   | C-CH <sub>3</sub> bends                               |
|               | 1041                   | 1049              | 1036                   | C-CH <sub>3</sub> rocking                             |
|               | 1038                   | 1052              | 1034                   | _                                                     |
| 1020          | 1021                   | 1037              | 997                    | C-CH <sub>3</sub> rocking & NH <sub>2</sub> stretches |

Table S3: Comparison of calculated bands and experimental IRMPD bands for 1,5-dimethylcytosine proton-bound homodimer (3). [19]



Figure S5: Comparison of scaled and unscaled harmonic and anharmonic calculated spectra of 1-methylcytosine/5-fluoro-1-methylcytosine protonbound heterodimer (6) *vs* experimental IRMPD spectra of 1-methylcytosine/5-fluoro-1-methylcytosine proton-bound dimer (in silhouette). [19]

|       | SBS      |            | LBS      |            |                                                           |
|-------|----------|------------|----------|------------|-----------------------------------------------------------|
| Exptl | Scaled   | SBS        | Scaled   | LBS        |                                                           |
| band  | Harmonic | Anharmonic | Harmonic | Anharmonic | Assignment                                                |
|       |          |            |          |            | C=O stretch & in-plane NH                                 |
| 1759  | 1763     | 1778       | 1739     | 1760       | bends                                                     |
| 1690  | 1697     | 1707       | 1676     | 1689       | C-NH <sub>2</sub> stretch & NH bends                      |
| 1662  | 1682     | 1695       | 1660     | 1675       | HNH in-plane bends,                                       |
|       | 1675     | 1687       | 1652     | 1663       | C=C & C=O stretches                                       |
| 1630  | 1639     | 1642       | 1623     | 1632       | HNH & NH i.p. bends, CO &<br>C=C stretches                |
| 1605  | 1610     | 1618       | 1593     | 1605       | HNH & NH in plane bends,                                  |
|       | 1607     | 1610       |          |            | C=C, C=O, & C-NH <sub>2</sub> stretches                   |
| 1580  |          |            | 1583     | 1589       | HNH & NH in-plane bends, CO<br>stretch                    |
| 1551  | 1541     | 1552       |          |            | NH i.p. bends, NC-CH & NH <sub>2</sub> C-<br>CF stretches |
| 1500  | 1500     | 1514       | 4540     | 1500       | NH i.p. bends, NC-CH & NH <sub>2</sub> C-                 |
| 1525  | 1529     | 1014       | 1016     | 1926       | CF Stretches                                              |
| 1505  | 1507     | 1508       | 1488     | 1494       | scissoring                                                |
| 1000  | 1001     | 1000       | 1400     | 1434       | NH & CH <sub>2</sub> in-plane bends, C-                   |
| 1479  | 1476     | 1486       | 1466     | 1483       | NH <sub>2</sub> stretches                                 |
|       | 1473     | 1480       | 1463     | 1485       | -                                                         |
|       | 1470     | 1464       | 1456     | 1469       |                                                           |
|       |          |            |          |            | methyl CH <sub>3</sub> bends & umbrella                   |
| 1431  | 1439     | 1450       | 1430     | 1427       | motions                                                   |
|       | 1439     | 1448       | 1429     | 1428       |                                                           |
|       | 1435     | 1443       | 1426     | 1437       |                                                           |
|       | 1433     | 1404       | 1425     | 1450       |                                                           |
| 1202  | 1202     | 1970       | 1202     | 1207       | HC=CH bends, CH <sub>3</sub> umbrella,                    |
| 1392  | 1393     | 1370       | 1303     | 1397       | EC=CH bends CH, umbrella                                  |
| 1368  | 1371     | 1340       | 1358     | 1365       | CN-CH stretch                                             |
|       |          | 1010       |          |            | HC=CH bends, CH <sub>3</sub> rocking,                     |
| 1332  | 1330     | 1307       | 1321     | 1334       | CN-CH stretch                                             |
|       |          |            |          |            | FC=CH bends, CH <sub>3</sub> rocking                      |
| 1294  | 1293     | 1299       | 1283     | 1300       | CN-CO stretch                                             |
| 4077  | 4000     | 105.1      | 1007     | 4070       | FC=CH bends, NH <sub>2</sub> C-N-CO                       |
| 1277  | 1288     | 1254       | 1267     | 1273       | Stretches                                                 |
| 1219  | 1248     | 1234       | 1227     | 1226       | NCON & EC CNH strateboo                                   |
|       | 1224     | 1194       | 1203     | 1214       | NH <sub>2</sub> bends                                     |

Table S4: Comparison of calculated bands and experimental IRMPD bands for the 1-methylcytosine/5-fluoro-1-methylcytosine proton-bound heterodimer (6). [19]



Figure S6: Comparison of scaled and unscaled harmonic and anharmonic calculated spectra of 5-fluoro-1-methylcytosine/1,5-dimethylcytosine protonbound heterodimer (4) *vs* experimental IRMPD spectra of the 5-fluoro-1methylcytosine/1,5-dimethylcytosine proton-bound dimer (in silhouette). [19]

| Expt | SBS<br>Scaled | SBS       | LBS     |                                              |
|------|---------------|-----------|---------|----------------------------------------------|
|      | Harmoni       | Anharmoni | Harmoni |                                              |
| band | С             | с         | С       | Assignment                                   |
| 1759 | 1761          | 1787      | 1735    | C=O stretch & in-plane NH bend               |
| 1686 | 1693          | 1698      | 1674    | C-NH <sub>2</sub> Stretch and HNH i.p. bends |
|      | 1682          | 1697      | 1660    | C=C stretch, NHN ip bend                     |
|      | 1672          | 1681      |         |                                              |
|      | 1000          | 1050      | 1017    | C=C stretch, NHN i.p. bend, HNH i.p.         |
| 1659 | 1639          | 1650      | 1647    | bend                                         |
| 1619 | 1623          | 1638      | 1624    | C=C Stretch, NHN I.p. bend                   |
| 1010 | 1606          | 1618      | 1607    | C_NH <sub>a</sub> stretch                    |
| 1575 | 1000          | 1010      | 1582    |                                              |
| 1544 | 1537          | 1551      | 1002    | NH i p bends non C=C ring stretches          |
| 1510 | 1525          | 1526      | 1523    | C-C-N ring stretches                         |
|      | 1508          | 1510      | 1513    | NH in-plane bends                            |
| 1456 | 1461          | 1474      | 1466    | C-NH <sub>2</sub> stretch, NH in-plane bends |
|      | 1450          | 1469      | 1463    | & CH₃ bends                                  |
| 1435 | 1440          | 1437      | 1440    | N-CH <sub>3</sub> bending & umbrella motions |
|      | 1439          | 1430      | 1430    |                                              |
|      | 1433          | 1410      | 1429    |                                              |
|      | 1431          |           | 1425    |                                              |
| 1367 | 1371          | 1378      | 1358    | N-CH stretch & CH₃ umbrella                  |
|      | 1362          | 1360      | 1351    | CH in-plane bend                             |
| 1335 | 1332          |           | 1323    | C-H in-plane bend, C-N-C stretches           |
| 1292 | 1293          | 1294      | 1283    | C-H in-plane bend, C-N-C stretches           |
|      | 1288          | 1290      | 1267    |                                              |
| 1222 | 1225          | 1237      | 1248    | N-C=O stretch & NH <sub>2</sub> rocking      |
|      | 1209          | 1213      | 1205    | C-CH₃ stretch                                |
| 1152 | 1145          | 1153      | 1136    | N-CH <sub>3</sub> stretch, C-H bends         |
|      | 1137          | 1141      | 1124    | & NH <sub>2</sub> rocking                    |
| 1050 | 1050          | 1059      | 1043    | NH <sub>2</sub> and CH <sub>3</sub> rocking  |
|      | 1046          | 1054      | 1037    |                                              |

Table S5: Comparison of calculated bands and experimental IRMPD bands for 5-F-1-methylcytosine/1,5-dimethylcytosine proton-bound heterodimer (**4**). [19]



Figure S7: Comparison of scaled and unscaled harmonic and anharmonic calculated spectra of 1,5-dimethylcytosine/5-fluoro-1-methylcytosine protonbound heterodimer (5) *vs* experimental IRMPD spectra of the 1,5-dimethylcytosine/5-fluoro-1-methylcytosine proton-bound dimer (in silhouette). [19]

|       | SBS      |            | LBS      |            |                                                          |
|-------|----------|------------|----------|------------|----------------------------------------------------------|
| Exptl | Scaled   | SBS        | Scaled   | LBS        |                                                          |
| band  | Harmonic | Anharmonic | Harmonic | Anharmonic | Assignment                                               |
|       |          |            |          |            | C=O stretch coupled with N-H in                          |
| 1752  | 1761     | 1783       | 1736     | 1755       | plane bends                                              |
|       | 1693     | 1703       | 1674     | 1684       | NH <sub>2</sub> in plane bend                            |
| 1070  | 1075     |            |          | 1001       | with C-NH <sub>2</sub> , C=C, & C=O                      |
| 1679  | 1675     | 1691       | 1649     | 1661       | stretches                                                |
| 1620  | 1002     | 1642       | 1643     | 1600       | C=C stratch with NHN_NH                                  |
| 1030  | 1655     | 1045       | 1010     | 1029       |                                                          |
| 1625  | 1624     | 1635       |          | 1616       | bends                                                    |
| 1000  | 1010     | 1017       | 1000     |            | C=O & C=C stretches, N-H in                              |
| 1600  | 1610     | 1617       | 1608     |            | plane bends                                              |
| 1507  |          |            | 1594     | 1590       | C=O & C=C stretches, N-H In                              |
| 1569  |          |            | 1004     | 1009       | piane bends                                              |
| 1539  | 153/     | 15/13      | 1520     | 1526       | C <sub>-</sub> C stretches & NH <sub>2</sub> rocking     |
| 1000  | 1525     | 1530       | 1512     | 1519       | NHN in-plane bend                                        |
| 1488  | 1491     | 1494       | 1473     | 1479       | HCH bends.                                               |
|       | 1477     | 1487       | 1466     | 1485       | i.p. NH bends, N=C-NH <sub>2</sub> stretches             |
| 1471  | 1473     | 1487       | 1462     | 1469       | Methyl CH <sub>3</sub> bends, N-H ip bends,              |
|       | 1471     | 1479       | 1461     | 1472       | HC=CHbends                                               |
| 1430  | 1440     | 1444       | 1430     | 1429       | N-Methyl H-C-H bends                                     |
|       | 1439     | 1426       | 1430     | 1434       |                                                          |
|       |          |            |          |            | N-methyl CH <sub>3</sub> umbrella HC=CH                  |
| 1386  | 1383     | 1398       | 1371     | 1386       | bends                                                    |
| 1367  | 1363     | 1371       | 1352     | 1361       | CH <sub>3</sub> umbrella, HC=CH bends,<br>OCN-CH stretch |
| 1335  | 1332     | 1350       | 1322     | 1338       | H <sub>3</sub> CC=CH & HC=CH bends                       |
|       | 1324     | 1329       | 1314     | 1327       | (O)C-N-C ring stretches                                  |
|       |          |            |          |            | ring N-CO stretches, methyl                              |
| 1252  | 1266     | 1270       | 1248     | 1256       | rocking                                                  |
|       | 1263     | 1268       | 1246     | 1250       | ring CH bends,                                           |
|       |          |            |          | 1000       | ring C-H i.p. bends, N-C(O) & C-                         |
| 1200  | 1210     | 1219       | 1198     | 1202       | CH <sub>3</sub> stretches                                |
|       | 1100     | 1007       | 1100     | 1100       | HC=CH in-plane bends, N-CH3                              |
| 1150  | 1196     | 1207       | 1189     | 1199       | C CH, stratch, H-CC=CH bonds                             |
| 1159  | 1147     | 1101       | 1141     | 1155       | HC-CH in plane bends & methyl                            |
| 1145  | 1144     | 1154       | 1136     | 1144       | rocking                                                  |
| 1133  | 1118     | 1134       | 1113     | 1127       | CH <sub>3</sub> methyl torisons                          |
|       | 1118     | 1118       | 1113     | 1122       |                                                          |
| 1108  | 1108     | 1124       | 1103     | 1112       | CH <sub>3</sub> and NH2 i.p. rock                        |
| 1090  | 1094     | 1087       | 1088     | 1084       | CH <sub>3</sub> and NH2 i.p. rock                        |
| 1056  | 1050     | 1059       | 1043     | 1050       | N-CH <sub>3</sub> i.p. bends                             |
|       | 1041     | 1053       | 1037     | 1049       | CH ring bends, & NH <sub>2</sub> rocking                 |

Table S6: Comparison of calculated bands and experimental IRMPD bands for the 1,5-dimethylcytosine / 1-methylcytosine proton-bound heterodimer (**5**). [19]



Figure S8: Comparison of the IRMPD spectra of heterodimer **4** (lower red trace) and heterodimer **5** (upper blue trace). The upper trace shows absorptions from CH stretches (small, sharp band near 2885 cm<sup>-1</sup>) not observed in the lower trace, which are therefore assigned to the methyl group at the 5-position of the 1,5-dimethylcytosine partner in the dimer.





Figure S10: Comparison of experimental solid state <sup>13</sup>C spectrum (top) of the iodide salt of **1** (B form) and the predicted <sup>13</sup>C spectrum for isolated **1** (bottom) computed using Gaussian09 at B3LYP/6-311++G\*\*.



Figure S11: Comparison of experimental solid state <sup>15</sup>N spectrum (top) of the iodide salt of **1** and the predicted <sup>15</sup>N spectrum for isolated **1** (bottom) computed using Gaussian09 at B3LYP/6-311++G\*\*.



Figure S12: Comparison of experimental IRMPD spectrum (red) of gaseous **1** and the experimental powder IR spectrum (blue; mixture of polymorphs) of the iodide salt of **1** in the 1000-1800 cm<sup>-1</sup> domain



Figure S13: Comparison of single crystal IR spectra of the iodide salt of **1** principally in the B crystal habit (red) and principally in the A crystal habit (blue, corresponding to previously published crystal structure of the iodide salt of the proton-bound dimer of 1-methylcytosine [6]).



Figure S-14: FT-IR spectra of the crystalline iodide salts of the proton-bound dimer of 1-methylcytosine and of its  $d_5$  deuterium-exhanged isotopomer. Black arrows indicate the 1890 cm<sup>-1</sup> band present in both spectra. Red arrow in the top blowup indicates the band that coincides with the 1570 cm<sup>-1</sup> band observed by IRMPD for gaseous ion **1**.