Supporting Information for

Dielectric behaviors and high energy storage density of nanocomposite with core-shell BaTiO₃@TiO₂ in poly(vinylidene fluoride-hexafluoropropylene)

Mojtaba Rahimabady^{a,b}, Meysam Sharifzadeh Mirshekarloo^a, Kui Yao^{a, *),} and Li Lu^b DOI: 10.1039/b000000x

^aInstitute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Research Link, 117602 (Singapore) ^{*}E-mail: (k-yao@imre.a-star.edu.sg)

^bDepartment of Mechanical Engineering, National University of Singapore, 21 Lower Kent Ridge Road, 119260 (Singapore)

As shown in Figure S1, XRD pattern of the core-shell nanoparticle powder was consistent with the TEM results of the BaTiO₃ and TiO₂ structures. It should be noted that as the result of the small thickness of the TiO₂ shells, the intensity of the XRD peaks at (210), (111), (211), (102), (112), (122), (321), and (421) that related to TiO₂ (Brookite) structure are very low.

Figure S1. XRD pattern of BT@TiO₂ powder

Figure S2. FESEM images of the surfaces of P(VDF-HFP)/BT@TiO₂ nanocomposite samples, (a)10 Vol %, (b) 30 Vol %, (c) 40 Vol %, (d) 50 Vol % BT@TiO₂ core-shell nanoparticle; and freeze-fractured cross-section images with (e) 10 Vol %, (f) 30 Vol %, (g) 40 Vol %, (h) 50 Vol % BT@TiO₂ core-shell nanoparticle.

Figure S3. Frequency dependent dielectric constant and loss of the pure P(VDF-HFP)

FigureS4. Comparison between the calculated dielectric constant according to Maxwell, Maxwell-Wagner and Logarithmic rules with experimental data on P(VDF-HFP)/BT@TiO₂ nanocomposite.

In Vo-Shi model, the effective dielectric constant of the composite, expressed by Equation (S1)

$$\varepsilon_c = \frac{h+2l}{h-l} \tag{S1}$$

where

$$h = \left[1 + 2\frac{(\varepsilon_M - \varepsilon_{int})(\varepsilon_{int} - \varepsilon_F)}{(2\varepsilon_M + \varepsilon_{int})(2\varepsilon_{int} + \varepsilon_F)}\frac{a^3}{b^3} - 2\frac{(\varepsilon_M - 1)(\varepsilon_M - \varepsilon_{int})}{(\varepsilon_M + 2)(2\varepsilon_M + \varepsilon_{int})}\frac{b^3}{c^3}\right]$$
$$- 2\frac{(\varepsilon_M - 1)(\varepsilon_M + 2\varepsilon_{int})(\varepsilon_{int} - \varepsilon_F)}{(\varepsilon_M + 2)(2\varepsilon_M + \varepsilon_{int})(2\varepsilon_{int} + \varepsilon_F)}\frac{a^3}{c^3}\right]$$
$$l = \left[\frac{(\varepsilon_M - 1)}{(\varepsilon_M + 2)}j - \frac{(2\varepsilon_M + 1)m}{(\varepsilon_M + 2)(2\varepsilon_M + \varepsilon_{int})}\frac{b^3}{c^3}\right]$$

and

$$j = \left[1 + 2\frac{(\varepsilon_M - \varepsilon_{int})(\varepsilon_{int} - \varepsilon_F)}{2(\varepsilon_M + \varepsilon_{int})(2\varepsilon_{int} - \varepsilon_F)}\frac{a^3}{b^3}\right]$$
$$m = \left[(\varepsilon_M - \varepsilon_{int}) + \frac{(\varepsilon_M + 2\varepsilon_{int})(\varepsilon_{int} - \varepsilon_F)}{(2\varepsilon_{int} + \varepsilon_F)}\frac{a^3}{b^3}\right]$$

and

 $\varepsilon_c, \varepsilon_M, \varepsilon_{int}$, and ε_F represent the dielectric constants of composite, matrix, interphase, and filler, respectively. *a* is the radius of the filler, b - a is the thickness of the interphase region, and *c* is the radius of the equivalent composite (sphere with radius c and dielectric constant ε_c).

The interphase volume fraction between the filler and the matrix is

$$Ø_{int} = k Ø_F Ø_M$$

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is O The Owner Societies 2013

$$\frac{a^3}{b^3} = \frac{V_F}{V_{int} + V_F} = \frac{\phi_F}{\phi_{int} + \phi_F} = \frac{(1 + k\phi_F)}{1 + k}$$
$$\frac{a^3}{c^3} = \frac{V_F}{V_C} = \phi_F$$
$$\frac{b^3}{c^3} = \frac{V_F + V_{int}}{V_C} = \phi_F + k\phi_F \frac{(1 - \phi_F)}{(1 + k\phi_F)} = \phi_F \left[1 + k\frac{(1 - \phi_F)}{(1 + k\phi_F)} \right]$$

where ϕ_{int} , ϕ_F , ϕ_M are volume fractions of interphase, fillers, and polymer, respectively, and k is the interphase volume constant. This constant reflects the matrix-filler interaction strength. A large positive k indicates strong polymer-filler interaction. The interphase characteristics may be affected by filler size (surface area), and chemical structure of interphase region that is related to the bonding between polymer and filler.

Figure S5. Displacement hysteresis loops of the P(VDF-HFP)/BT@TiO₂ nanocomposites

with different volume fractions at breakdown field.