## Electronic Supplementary Information

## Blue-green emitting sulphonamido-imidazole derivatives. ESIPT based excited state dynamics

Adina I. Ciuciu,<sup>a</sup> Lucia Flamigni,\*<sup>a</sup>, Kamil Skonieczny,<sup>b</sup> and Daniel T. Gryko\*<sup>b,c</sup>

<sup>*a*</sup> Istituto per la Sintesi Organica e Fotoreattivita' (ISOF), CNR, Via P. Gobetti 101, 40129 Bologna. Italy. Fax: +39 (0)51 639 98 44; Tel: +39 (0)51 639 98 12; E mail: <u>flamigni@isof.cnr.it</u>

<sup>b</sup> Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52 01-224, Warsaw, Poland. Fax: +48 22 632 66 81; Tel: +48 22 343 30 63, E-mail: <u>dtgryko@icho.edu.pl</u>

<sup>d</sup> Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland; Fax: +48 22 628 27 41; Tel: +48 22 234 58 01

| Table of Contents | Page |
|-------------------|------|
| Photophysics      |      |
| Figure S1         | 2    |
| • Table S1        | 3    |
| • Figure S2       | 4    |
| • Figure S3       | 5    |
| Synthesis:        |      |
| Scheme S1         | 6    |
| Spectral data     | 7-14 |



Figure S1. Absorption spectra of samples 2, 4, 5 and 7 in the various solvents: TOL (black), DCM (red) and MeOH (blue).

|   | Toluene                                                                   | Dichloromethane                                          | Methanol                                                                      |
|---|---------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------|
|   | $\boldsymbol{\varepsilon}_{\mathrm{max}}/\mathrm{M}^{-1}\mathrm{cm}^{-1}$ | $\varepsilon_{\rm max}/{ m M}^{-1}{ m cm}^{-1}$          | $\boldsymbol{\varepsilon}_{\mathrm{max}}/\ \mathrm{M}^{-1}\ \mathrm{cm}^{-1}$ |
|   | $(\lambda_{max}/nm)$                                                      | $(\lambda_{\rm max}/{\rm nm})$                           | $(\lambda_{\rm max}/{\rm nm})$                                                |
| 2 | 18000 (300)                                                               | 17900 (287)                                              | 18100 (275)                                                                   |
| 3 | 16100 (312)                                                               | 18100 (281)<br>16100 (310)                               | 18100 (280)<br>14900 (308)                                                    |
| 4 | 14500 (316)                                                               | 20400 (287)<br>15200 (313)                               | 20000 (279)<br>13200 (310)                                                    |
| 5 | 19900 (311)<br>300 (360)                                                  | 19600 (288)<br>20200 (302)<br>1000 (362)                 | 23500 (277)<br>600 (355)                                                      |
| 6 | 18700 (305)<br>2400 (370)                                                 | 19500 (287)<br>16900 (310)<br>2900 (370)                 | 19700 (286)<br>16000 (308)<br>3000 (364)                                      |
| 7 | 18500 (328)<br>14300 (344)<br>12700 (361)                                 | 57600 (262)<br>18700 (327)<br>13900 (343)<br>12600 (360) | 52700 (259)<br>12900 (324)<br>9200 (341)<br>8500 (357)                        |

 Table S1.
 Absorption band maxima and molar absorption coefficients in the various solvents.



**Figure S2**. Arbitrary scaled prompt luminescence spectra at 77 K and room temperature in MeOH after excitation at 317 nm. The delayed luminescence spectra taken after 1 ms are also shown.



Figure S3. Transient absorption spectra at the end of pulse of 3, 4 and 5 in DCM and of 3, 4, 6, 7 in MeOH after excitation with a 18 ns laser pulse (355 or 266 nm, 3 mJ/pulse) for optically matched solutions with A = 0.7 at the exciting wavelength.

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2013



Scheme 1. Synthesis of the imidazole-sulfonamide derivatives.



7



## Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is C The Owner Societies 2013



Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is C The Owner Societies 2013



Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2013





![](_page_12_Figure_1.jpeg)

![](_page_13_Figure_1.jpeg)