Supplementary information

Enhancing the electrochemical kinetics of high voltage olivine LiMnPO₄ by isovalent co-doping

Vishwanathan Ramar and Palani Balaya*

Department of Mechanical Engineering, National University of Singapore, Singapore 117576

*E-mail address: mpepb@nus.edu.sg; Tel: +65 6516 7644; Fax: +65 6779 1459

Fig. S1 FESEM images of (a) $LiMn_{0.9}Fe_{0.1}PO_4$, (b) $LiMn_{0.9}Fe_{0.05}Mg_{0.05}PO_4$ and (c) $LiMn_{0.95}Mg_{0.05}PO_4$.

Fig. S2 Elemental mapping images of (a) manganese, (b) iron, (c) carbon, (d) phosphorus, and (e) oxygen in $LiMn_{0.9}Fe_{0.1}PO_4/C$.

Fig. S3 Elemental mapping images of (a) manganese, (b) iron, (c) magnesium, (d) carbon, (e) phosphorus, and (f) oxygen in $LiMn_{0.9}Fe_{0.05}Mg_{0.05}PO_4/C$.

Fig. S4 Elemental mapping images of (a) manganese, (b) magnesium, (c) carbon, (d) phosphorus, and (e) oxygen in $LiMn_{0.95}Mg_{0.05}PO_4/C$.

Fig. S5 Nitrogen sorption isotherm with pore size distribution (inset) for $LiMn_{0.9}Fe_{0.1}PO_4/C$.

Fig. S6 Nitrogen sorption isotherm with pore size distribution (inset) for $LiMn_{0.95}Mg_{0.05}PO_4/C$.

Fig. S7 Capacity error bar chart; specific capacities vs. C-rates of $LiMn_{0.9}Fe_{(0.1-x)}Mg_xPO_4/C$ (x = 0 and 0.05) and $LiMn_{0.95}Mg_{0.05}PO_4/C$.

Fig. S8 (a) Capacity retention upto 100 cycles at 1C and (b) corresponding coulombic efficiency (shown in the magnified scale for the sake of clarity) of $\text{LiMn}_{0.9}\text{Fe}_{(0.1-x)}\text{Mg}_x\text{PO}_4/\text{C}$ (x = 0 and 0.05) and $\text{LiMn}_{0.95}\text{Mg}_{0.05}\text{PO}_4/\text{C}$.

Fig. S9 Ex-situ PXRD patterns of $LiMn_{0.9}Fe_{0.05}Mg_{0.05}PO_4$ (a) fully charged to 4 V, (b) partially charged to 4.6 V, (c) discharged to 2.3 V and (d) standard powder pattern of LiMnPO₄ (JCPDS card No: 33-0803).

Fig. S10 Rietveld refinement of (a) $LiMn_{0.9}Fe_{0.1}PO_4$ (R_{exp} :4.91, R_{wp} :1.04 and R_p :0.61), (b) $LiMn_{0.9}Fe_{0.05}Mg_{0.05}PO_4$ (R_{exp} :6.77, R_{wp} :1.65 and R_p :0.99) and (c) $LiMn_{0.95}Mg_{0.05}PO_4$ (R_{exp} :6.79, R_{wp} :1.71 and R_p :1.08).

Table S1 Site occupancies of $LiMn_{0.9}Fe_{(0.1-x)}Mg_xPO_4/C$ (x = 0 and 0.05), $LiMn_{0.95}Mg_{0.05}PO_4/C$. Data for $LiMnPO_4/C$ is given for the sake comparison, whose Mn, P and O refined positions are consistent with literature report.^{36, 42, 43}

LiMnPO ₄ (R_{exp} : 11.24 R_{wp} : 4.04 R_{p} : 3.21)								
Atom	Site	X	y	Z	Occupancy (theoretical)	Occupancy (Observed)		
Li1 (Li ⁺¹)	4a	0.0	0.0	0.0	1	1		
Mn1(Mn ⁺²)	4c	0.2500	0.2817	-0.0281	1	1		
P1(P ⁺⁵)	4c	0.2500	0.0923	0.4081	1	1		
O1(O ⁻²)	4c	0.2500	0.0968	-0.2664	1	1		
O2(O ⁻²)	4c	0.2500	0.4561	0.2073	1	1		
O3(O ⁻²)	8d	0.0492	0.1609	0.2781	1	1		
$LiMn_{0.9}Fe_{0.1}PO_4$ (R_{exp} : 4.91 R_{wp} : 1.04 R_p : 0.61)								
Atom	Site	X	У	Z	Occupancy (theoretical)	Occupancy (Observed)		
Li1 (Li ⁺¹)	4a	0.0	0.0	0.0	1	0.9994		
Li2 (Li ⁺¹)	4c	0.2500	0.2817	-0.0281	0	0.0006		
Fe1(Fe ⁺²)	4a	0.0	0.0	0.0	0	0.0006		
Fe2(Fe ⁺²)	4c	0.2500	0.2817	-0.0281	0.1	0.0994		
$Mn1(Mn^{+2})$	4c	0.2500	0.2817	-0.0281	0.90	0.90		
$P1(P^{+5})$	4c	0.2500	0.0923	0.4081	1	1		
O1(O ⁻²)	4c	0.2500	0.0968	-0.2664	1	1		
O2(O ⁻²)	4c	0.2500	0.4561	0.2073	1	1		
O3(O ⁻²)	8d	0.0492	0.1609	0.2781	1	1		

$LiMn_{0.9}Fe_{0.05}Mg_{0.05}PO_4 (R_{exp}: 6.77 R_{wp}: 1.65 R_p: 0.99)$									
Atom	Site	X	у	Z	Occupancy (theoretical)	Occupancy (Observed)			
Lil (Li ⁺¹)	4a	0.0	0.0	0.0	1	0.9987			
$\text{Li2}(\text{Li}^{+1})$	4c	0.2500	0.2817	-0.0281	0	0.0013			
Mg1(Mg ⁺²)	4a	0.0	0.0	0.0	0	0.0013			
Mg2(Mg ⁺²)	4c	0.2500	0.2817	-0.0281	0.05	0.0487			
Fe2(Fe ⁺²)	4c	0.2500	0.2817	-0.0281	0.05	0.05			
$Mn1(Mn^{+2})$	4c	0.2500	0.2817	-0.0281	0.90	0.90			
P1(P ⁺⁵)	4c	0.2500	0.0923	0.4081	1	1			
O1(O ⁻²)	4c	0.2500	0.0968	-0.2664	1	1			
O2(O ⁻²)	4c	0.2500	0.4561	0.2073	1	1			
O3(O ⁻²)	8d	0.0492	0.1609	0.2781	1	1			
$LiMn_{0.95}Mg_{0.05}PO_4 (R_{exp}: 6.79 R_{wp}: 1.71 R_p: 1.08)$									
Atom	Site	X	у	Z	Occupancy (theoretical)	Occupancy (Observed)			
Li1 (Li ⁺¹)	4a	0.0	0.0	0.0	1	0.9986			
Li2 (Li ⁺¹)	4c	0.2500	0.2817	-0.0281	0	0.0014			
$Mg1(Mg^{+2})$	4a	0.0	0.0	0.0	0	0.0014			
Mg2(Mg ⁺²)	4c	0.2500	0.2817	-0.0281	0.05	0.0486			
$Mn1(Mn^{+2})$	4c	0.2500	0.2817	-0.0281	0.95	0.95			
P1(P ⁺⁵)	4c	0.2500	0.0923	0.4081	1	1			
O1(O ⁻²)	4c	0.2500	0.0968	-0.2664	1	1			
O2(O ⁻²)	4c	0.2500	0.4561	0.2073	1	1			
O3(O ⁻²)	8d	0.0492	0.1609	0.2781	1	1			

We have carried out XRD refinement to check the position of dopants (Fe²⁺ and/or Mg²⁺) by Rietveld refinement using TOPAS 3.0 version. The quality of the refinement and dopant position was determined based on R_{exp} , R_{wp} , and R_p values. For instance in the case of LiMn_{0.9}Fe_{0.05}Mg_{0.05}PO₄ firstly, assuming the Mg²⁺ and Fe²⁺ occupy only Li sites, the reliability factor were R_{exp} :6.77, R_{wp} :1.83 and R_p :1.10; Secondly, assuming the Mg²⁺ and Fe²⁺ occupy only Mn sites, then the reliability factors R_{exp} :6.77, R_{wp} :1.80 and R_p :1.07; Thirdly, assuming the Mg²⁺ and Fe²⁺ occupy simulteneoualy both Li and Mn sites, then the reliability factors are R_{exp} :6.77, R_{wp} : 1.65 and R_p :0.99. Based on good reliability factors as seen from the third case and observed site occupancies as shown in Table S1, Mg²⁺ and Fe²⁺ are most likely to occupy Mn sites. Under these lines, LiMn_{0.9}Fe_{0.1}PO₄ and LiMn_{0.95}Mg_{0.05}PO₄ are also refined based on above three possibilities. Similarly, we found that Fe²⁺ or Mg²⁺ occupy simulteneoualy both Li and Mn sites as inferred from the better reliability factors (R_{exp}:4.91, R_{wp}:1.04 and R_p:0.61 for LiMn_{0.9}Fe_{0.1}PO₄; R_{exp}:6.79, R_{wp}:1.71 and R_p:1.08 for LiMn_{0.95}Mg_{0.05}PO₄). Hence, as seen from the site occupancies in all the samples (Table S1) from Rietveld refinement, Fe²⁺ and/or Mg²⁺ is found to be substituted mostly in the Mn site, not in the Li site.

Nitrogen			
sorption data of Fe ²⁺			
and/or Mg ²⁺ doped	LiMn _{0.9} Fe _{0.1} PO	LiMn _{0.9} Fe _{0.05} Mg _{0.05} PO	$LiMn_{0.95}Mg_{0.05}PO_4$
LiMnPO ₄	4	4	
Surface Area (S _{BET})			
$(m^2 g^{-1}) (\pm 2)$	45	52	48
Pore volume $(cc.g^{-1})$			
(±0.0005)	0.084	0.132	0.1
Pore size (nm) (± 0.1)	3.7	3.7	5.7

Table S2 Nitrogen sorption data of $LiMn_{0.9}Fe_{(0.1-x)}Mg_xPO_4/C~(x=0~and~0.05)$ and $LiMn_{0.95}Mg_{0.05}PO_4/C$

 $*S_{BET}$ – Surface area by Brunauer–Emmet–Teller equation; S_t –Surface area derived from V–t plot.

Table S3 A summary of lithium storage performance of all the composition at different current rates.

Electrode materials/ C rates	0.1C	0.2C	0.5C	1C	2C	5C	10C
$LiMn_{0.9}Fe_{0.1}PO_4$	136.8	130.2	119.6	105.6	80	62.4	35.4
LiMn _{0.9} Fe _{0.05} Mg _{0.05} PO-	159	155.8	141.4	118.8	104.6	81.4	51.8
LiMn _{0.95} Mg _{0.05} PO ₄	128.4	118	105.2	98.2	69.2	59.4	24.4

S.N	Electrode composition	Carbon content	Maximum Capacity (in mAh g ⁻¹)	Reference s
1	LiMn _{0.9} Fe _{0.05} Mg _{0.05} PO ₄ / C	25wt % carbon	159	Present work
2	LiMn _{0.9} Mg _{0.1} PO ₄ /C	25wt % carbon + 5 % synthetic flake graphite	120	31
3	LiMn _{0.99} Mg _{0.01} PO ₄ /C	25wt % carbon	145	32
4	LiMn _{0.8} Mg _{0.2} PO ₄ /C	25wt % carbon + 5 % synthetic flake graphite	150	34
5	LiMn _{0.9} Fe _{0.05} Mg _{0.05} PO ₄ / C	31wt % carbon	140	36
6	LiMn _{0.9} Fe _{0.09} Mg _{0.01} PO ₄ / C	20wt % carbon	140	37
7	LiMn _{0.8} Mg _{0.2} PO ₄ /C	12.1wt % carbon +8wt % synthetic flake graphite	70	40

Table S4 A summary of lithium storage performance and carbon content from the literature.