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Supplementary Material

0.1 Reaction rates

This part of the Supplementary Material gives the details of the section on Reaction rates in the main
paper.

The �ux along the reaction coordinates γ1 and γ2 can be described using Kramers theory (1, 2)
and its activated nature can be used to identify the magnitude of Jγ1 and Jγ2. The chemical potential
of a molecular motor at temperature T, is given in terms of the motor enthalpy and the probability
distributions P1(γ1, t) or P2(γ2, t) (where we have introduced the short-hand notation, P1(γ1, t) ≡
P (xa, γ1, 0, t) and P2(γ2, t) ≡ P (xa, 1, γ2, t)) along the two reaction coordinates by

µj(γj , t) = hj(γj) + kBT ln [Pj(γj , t)] (1)

where hj(γj) are the enthalpies (3) per molecular motor along the reaction paths, and where we have
also introduced the short-hand notation, µ1(2)(γ1(γ2), t) = µ(xa, γ1(1), 0(γ2), t) and h1(2)(γ1(γ2), t) =
h(xa, γ1(1), 0(γ2), t). A good approximation to hj(γj) may be derived from the potential of mean force
of the motor in its activated or deactivated conformation. In equilibrium the chemical potential, µeq,
is constant (independent of x, γ1, γ2, t). In this case we can then express

µeq = kBT ln [Pj,eq(γj)] + hj(γj) (2)

which allows to write the motor equilibrium probability distribution as

Pj,eq(γj) = exp

[
µeq − hj(γj)

kBT

]
. (3)

Along the �rst reaction path, the molecular motor goes from state d to state a and one ATP molecule is
hydrolyzed to ADP and Pi. Therefore, h1(0) = hd +hATP +hH2O and h1(1) = ha +hADP +hPi. Along
the second reaction path the molecular motor goes from state a to state d. Using the same reference
value we have h2(1) = hd + hADP + hPi and h2(0) = h1(1). When a fraction of the motors �rst moves
from state d to a using the �rst reaction, and then from a to d using the second reaction, (both on the
same position xa), the reaction enthalpy hATP − hADP − hPi is lost as heat in the surroundings. The
enthalpy pro�les associated to both reaction paths was illustrated in Figs. 3 and 4.

The reaction coordinates are characterized by high enthalpy barriers, larger than the thermal
energy kBT , at γ1,0 and γ2,0,which determine the corresponding transition states. As a consequence,
the probability of �nding molecular motors in the transition states is very small, both in equilibrium
and away from equilibrium. Therefore, the enthalpies at the transition states can be referred to as the
transition state energies, h1(γ1,0) ≡ h1,0 and h2(γ2,0) ≡ h2,0, see Figs. 3 and 4.

With large transition state energies, the reactions become slow and therefore quasi-stationary.
In a quasi-stationary state, the reaction rates are independent of the reaction coordinate

Jγj (γj , t) = Jγj(t) [θ(γj − 0)− θ(γj − 1− 0)] (4)
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where θ is the Heaviside function, which is zero for a negative and one for a positive argument 1 The
uniform value of the reaction �ux implies that the chemical potential is roughly constant for reactants
and products, at both sides of the transition state γj,0 (2)

µ1(γ1, t) = [µd(t) + µATP + µH2O] θ(γ1,0 − γ1) + [µa(t) + µADP + µPi] θ(γ1 − γ1,0)
µ2(γ2, t) = [µa(t) + µADP + µPi] θ(γ2,0 − γ2) + [µd(t) + µADP + µPi] θ(γ2 − γ2,0) (5)

The �rst expression indicates that the molecular motor transition from state d to a couples uniquely
to the reaction ATP + H2O 
 ADP + Pi of the fuel. We assume that the chemical potentials
(concentrations) of ATP, H2O, ADP and inorganic phosphate Pi are kept constant by bu�ering the
system. In the second reaction µADP + µPi only serves to indicate an activated state, comparable to
a reference value. The uniform magnitude of the chemical potential at both sides of the transition
state allows us to identify the chemical potential associated with the activated and deactivated states
of the motor, µa(t) and µd(t) respectively. Quasi-stationarity leads to similar relations for other
thermodynamic variables,

h1(γ1) = [hd + hATP + hH2O] θ(γ1,0 − γ1) + [ha + hADP + hPi] θ(γ1 − γ1,0)
h2(γ2) = [ha + hADP + hPi] θ(γ2,0 − γ2) + [hd + hADP + hPi] θ(γ2 − γ2,0) (6)

for the enthalpy densities of the two chemical processes2 and

P1(γ1, t) = Pd(t)θ(γ1,0 − γ1) + Pa(t)θ(γ1 − γ1,0)
P2(γ2, t) = Pa(t)θ(γ2,0 − γ2) + Pd(t)θ(γ2 − γ2,0) (7)

for the corresponding probability distributions. Close to the transition states, for γj ' γj,0 all these
variables change continuously from their values in the reactant and product basins: µj 's monotonously,
hj 's developing a large peak while Pj 's dip much below the constant values further away. The proba-
bility densities of a motor as it changes conformation are accessible; for example, in numerical studies
they can be deduced from snapshots of the system's distribution of states.

It is well-known that the Onsager kinetic coe�cients, Lγj(γj , t), are usually in good approxima-
tion proportional to Pj(γj , t). Accordingly, we introduce a di�usion coe�cient for each reaction

Dγj ≡ kBT
Lγj(γj , t)

Pj(γj , t)
(8)

that can be regarded as constant. Due to the factor kBT , Dγj have the dimensionality s−1 which is
appropriate along the dimensionless reaction coordinates. Substituting the di�usion coe�cients in the
�ux-force relations (11) in the main text. Using Eq.(15) from the main text, we obtain

Jγj(t) exp
hj(γj)

kBT
= −Dγj

∂

∂γj
exp

µj(γj , t)

kBT
(9)

1In order to ensure reactant and product conservation, the zero is in fact an in�nitesimally small positive number and
causes the reaction �ux to be zero for γj = 0 and γj = 1, a property used to derive Eq.(6) in the main text.

2Taking hi in good approximation constant away from γi,0 neglects factors exp[(hi(x, t)−h(x, γ, t))/kBT ], for i = 1, 2,
which allows one to derive simpler, explicit expressions for the quasi-steady reaction �uxes, as will be done in the next
section.
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which can be integrated over γj to get the magnitude of the quasi-steady reaction �uxes of the molecular
motor,

Jγ1(t) =
Dγ1∫

exp h1(γ1)
kBT

dγ1

[
exp

µd(t) + µATP + µH2O

kBT
− exp

µa(t) + µADP + µPi
kBT

]
Jγ2(t) =

Dγ2∫
exp h2(γ2)

kBT
dγ2

[
exp

µa(t) + µADP + µPi
kBT

− exp
µd(t) + µADP + µPi

kBT

]
(10)

which can be expressed compactly as

Jγ1(t) = Jγ1,+(t)

[
1− exp

∆G−∆µ(t)

kBT

]
Jγ2(t) = Jγ2,+(t)

[
1− exp

∆µ(t)

kBT

]
(11)

where the unidirectional forward reaction rates are given by

Jγ1,+(t) = Dγ1

[∫
exp

h1(γ1)− µd(t)− µATP − µH2O

kBT
dγ1

]−1

Jγ2,+(t) = Dγ2

[∫
exp

h2(γ2)− µa(t)− µADP − µPi
kBT

dγ2

]−1

(12)

and
∆µ(t) ≡ µd(t)− µa(t) and ∆G ≡ µADP + µPi − µATP − µH2O. (13)

∆µ(t) and ∆G have been chosen so that they are both negative when the reaction proceeds from
reactants to products. The absolute value of both is generally much larger than the thermal energy;
in the system considered, the motor usually displaces in the regime ∆µ(t) − ∆G � kBT . It is also
possible to extract the backward rate, when information is available on equilibrium exchange rates.
This implies that both forward reaction rates are much larger than the backward reaction rates, so
that in good approximation

Jγj(t) ' Jγj,+(t) (14)

When |∆µ(t)| and |∆G| are small compared to the thermal energy kBT, one can linearize Eq.(11)
leading to

Jγ1(x, t) = −Jγ1,+(x, t)
∆G−∆µ(t)

kBT
and Jγ2(x, t) = −Jγ2,+(x, t)

∆µ(t)

kBT
, (15)

expressions one obtains using classical non-equilibrium thermodynamics. For example, in this regime,
reaction rate of Eq.(1a) of the main text, Jγ1, is proportional to a linear combination of ∆G for the
ATP hydrolysis and the chemical potential di�erence of the activation step. The large values of ∆µ
and ∆G imply that the �uxes become nonlinear in the driving forces. The expressions of these �uxes
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can be simpli�ed taking advantage of the large magnitude of the transition state enthalpies, hj,0, to
approximate ∫

exp[
hj(γj)

kBT
]dγj = exp

hj,0
kBT

∫
exp[

hj(γj)− hj,0
kBT

]dγj ≡ Cj,0 exp
hj,0
kBT

(16)

where the Cj,0 are constants of the order one. These expressions allow us to rewrite the forward �uxes

Jγ1,+(t) =
Dγ1

C1,0
exp[

µd(t) + µATP + µH2O − h1,0
kBT

]

Jγ2,+(t) =
Dγ2

C2,0
exp[

µa(t) + µADP + µPi − h2,0
kBT

] (17)

as expected from the law of mass action. Once the �uxes have been identi�ed, it is possible to quantify
the slipping of the molecular motor, 1−z, related to the conformational changes it experiences without
ATP hydrolysis. In the usual regime at which the motor operates, using Eq.(14) from the main text
and (14) one obtains for z

z ' 1− Jγ2,+
Jγ1,+

= 1− Dγ2

Dγ1

C1,0

C2,0
exp[

∆µ(t)−∆G+ h1,0 − h2,0
kBT

] (18)

Close to thermal equilibrium z reduces to

z ' 1− Dγ2

Dγ1

C1,0

C2,0

∆µ(t)

∆G−∆µ(t)
exp[

h1,0 − h2,0
kBT

] (19)

0.2 Enthalpy pro�les

In this section we derive an explicit expression for the e�ective enthalpy pro�le h, used in the main
text is the section on Molecular Motor Displacement.

We use a simple model in which ha is constant while hd(x) = c + d(1 − x) is a linear function
which drops from c+ d to c between x equal to 0 and 1. Furthermore we take the di�usion coe�cient
D constant. In that case the e�ective enthalpy is given by (4)

h(γ3)− h(0) =

∫ γ3

0
dαλ(α)

∂

∂y
hd(y) (20)

The �rst and the second reaction take place at positions xa + n where n is an integer. γ3 is taken to
be zero in xa− 1 and 1 in xa. This implies that y = xa− 1 +α in the integrand while x = xa− 1 + γ3.
The derivative of the enthalpy in the domain of integration is ∂hd(y)/∂y = −d(1 − δ(y)), where δ(y)
is a delta function. λ(γ3) can be regarded as the fraction of deactivated motors along the �lament
coordinate, γ3, which are the ones that contribute to the inhomogeneous enthalpy, h. As we explained
in the footnote below Eq.(9) in the main text, λ is a linear function of the position, λ(γ3) = a+ bγ3 in
the description we have given. λ therefore increases from a in γ3 = 0 or x = xa − 1 to a+ b in γ3 = 1
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or x = xa. Note that both hd and λ are periodic along the ligament with a period 1. Substituting λ
and the derivative of hd into Eq.(20) gives upon integration

h(γ3)− h(0) = d

[
a (θ (x)− γ3) + b

(
(1− xa) θ (x)− 1

2
γ23

)]
(21)

where θ (x) is the Heaviside function, which is zero for a negative argument and 1 for a positive
argument. It follows from this equation that

h(γ3 = 1)− h(γ3 = 0) = db

(
1

2
− xa

)
(22)

This illustrates the very important fact that the e�ective enthalpy is no longer a periodic function.
For positive values of d and b, which is the natural choice in our model, and xa > 1/2 the e�ective
enthalpy decreases from interval to interval. It would be easy to obtain the e�ective enthalpy pro�le
for a more general choice of λ, given that ha and hd(x) are not changed. As this does not add much
to our model we will not further pursue this.
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