Electronic Supplementary Information for:

Separation of CO₂/CH₄ mixture on defective single walled carbon nanohorn – tip does matter

Sylwester Furmaniak, Artur P. Terzyk, Piotr Kowalczyk, Katsumi Kaneko and Piotr A. Gauden

> Number of pages: 5 Number of Tables: 1 Number of Figures: 3

Table 1S.

The values of LJ potential parameters and point charges applied in simulations

Molecule	Centre	σ [nm]	ε/k _B [K]	<i>q/</i> e	Reference
<i>CO</i> ₂	C	0.2824	28.680	+ 0.664	. 1
	0	0.3026	82.000	- 0.332	
CH4	С	0.3400	55.055	- 0.660	
	Н	0.2650	7.901	+ 0.165	2
	C-H*	0.3025	30.600	-	
nanohorn	С	0.3400	28.000	_	3
					and references therein

* cross-interaction parameters

Figure 1S. Variations of the isosteric enthalpy of CO_2/CH_4 adsorption with total pressures of CO2/CH4 bulk mixtures and molar fractions of CO_2 in bulk mixtures computed for all studied series of SWCNHs (see Figure 1 in the main article).

Figure 2S. The axial section of SWCNHs. H is the length of tubular part, R is the radius of tubular part (H- H_{eff} = 0.17 nm = R- R_{eff}), and α is the apex angle of horn-shaped tip.

Figure 3S. The changes of surface to volume ratio calculated for model simplified geometry of SWCNHs (see Figure 2S, axial section) with the rise in apex angle, α (a), diameter, D (b), and length of tubular part (c). The points correspond with sizes of the studied systems – see Fig. 1. Panel (b) presents also the data calculated for infinite SWCNTs. The values of surface area or volume are calculated on the basis of the following equations: $S_{SWCNT} = 2\pi R_{eff} H$,

$$V_{\text{SWCNT}} = \pi R_{eff}^2 H , \ S_{\text{SWCNH}} = \pi R_{eff}^2 + 2\pi R_{eff} H_{eff} + \frac{\pi R_{eff}^2}{\sin \frac{\alpha}{2}}, \text{ and } V_{\text{SWCNH}} = \pi R_{eff}^2 H_{eff} + \frac{\pi R_{eff}^3}{3tg \frac{\alpha}{2}}.$$

References

- [1] T. X. Nguyen, Ph.D. Thesis, University of Queensland, 2006.
- [2] A. P. Terzyk, S. Furmaniak, P. A. Gauden and P. Kowalczyk, *Adsorpt. Sci. Technol.*, 2009, **27**, 281.
- [3] S. Furmaniak, A. P. Terzyk, K. Kaneko, P. A. Gauden, P. Kowalczyk and T. Itoh, *Phys. Chem. Chem. Phys.*, 2013, **15**, 1232.