Boron-substituted graphyne as a versatile material with high Storage capacities of Li and H₂: A multiscale theoretical study

Ruifeng Lu,*^{*a*} Dewei Rao,^{*a,b*} Zhaoshun Meng,^{*a*} Xuebiao Zhang,^{*a*} Genjian Xu,^{*a*} Yuzhen Liu,^{*a*} Erjun Kan,^{*a*} Chuanyun Xiao,*^{*a*} and Kaiming Deng*^{*a*}

^aDepartment of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, P R China

^bInstitute for Advanced Materials, Jiangsu University, Zhenjiang 212013, P R China

Email: rflu@njust.edu.cn; cxiao@njust.edu.cn; kmdeng@njust.edu.cn

S1. Computational details

The original force field (FF) parameters can not completely describe the interactions between the atoms in this work, so the Dreiding FF which is selected to perform the GCMC simulations should be appropriately modified. We calculated the potential energy relationships between H_2 and host materials and fitted the data by using the Morse equation¹ as

$$U_{ij}(r_{ij}) = D\left\{\exp\left[\alpha(1-\frac{r_{ij}}{r_o})\right] - 2 \cdot \exp\left[\frac{\alpha}{2}(1-\frac{r_{ij}}{r_o})\right]\right\}$$

with the well depth D, the force constant α , and the equilibrium bond distance r_0 .

Fig. S1 shows the calculated results from DFT methods with the Grimme correction and the fitted results. It is clear that the fitted line is in good agreement with the calculated data. All FF parameters used in this work are listed in Table S1.

Fig. S1. The interaction energy between H₂ and Li-BG.

Terms	D (kcal/mol)	α	r_0 (Å)
H_AH_A	0.01850	10.70940	3.56980
BHA	0.02801	12.78312	3.40987
CHA	0.10041	10.39184	3.14283
Li_1HA	1.80100	7.32310	2.08068
Li_2HA	1.12918	7.68084	2.18644

Table S1. FF parameters (Li_1 is the Li atoms at P-I and Li_2 at P-II).

S2. Complementary data

Fig. S2. The geometric and band structures of 2BG and 3BG.

Fig. S3. The structure of fully Li loaded on 1BG at 500 K after 2 ps MD simulation.

Fig. S4. Charge density differences of H_2 adsorbed around Li atoms: (a) at P-I and (b) at P-II.

Reference

1. P. M. Morse, *Phys. Rev.*, 1929, **34**, 57-64.