Sample Input Files for MD Simulations Using Gromacs:

1. Topology File:

```
[ defaults ]
; nbfunc comb-rule gen-pairs fudgeLJ fudgeQQ
1 2 no 1 1
; nbfunc=1 for LJ; 2 for LB rule and 3 for geometric mixing rule.
[ atomtypes ]
; name at_no mass charge ptype sigma epsilon ;SPC/E
\begin{tabular}{llllccc} 
U & 92 & 238.0289 & 2.5 & A & 0.295 & 0.530 \\
Ou & 8 & 15.99940 & -0.25 & A & 0.383 & 0.057 \\
Ow & 8 & 15.99940 & -0.8476 & A & \(3.165492 \mathrm{e}-01\) & 0.650299455 \\
Hw & 1 & 1.00800 & 0.4238 & A & 0 & 0
\end{tabular}
[ nonbond_params ]
\begin{tabular}{llllll}
; i & j & func & sigma(c6) & eps(c12) \(;\) SPC/E water model \\
U & Ow & 1 & 0.306 & 0.587 \\
U & Hw & 1 & 0 & 0 \\
Ou & Ow & 1 & 0.350 & 0.192 & \\
Ou & Hw & 1 & 0 & 0
\end{tabular}
[ moleculetype ]
; molname nrexcl
ION 2
[ atoms ]
\begin{tabular}{llllllcc}
; id at type & & res nr & residu name at name cg nr charge \\
1 & Ou & 1 & \(\mathrm{UO2}\) & Ou1 1 & -0.25 & \\
2 & U & 1 & UO 2 & U & 1 & 2.5 & \\
3 & Ou & 1 & UO 2 & Ou2 1 & -0.25 &
\end{tabular}
[ bonds ]
\begin{tabular}{llllll}
; \(i\) & \(j\) & funct & length & force.c. \\
1 & 2 & 1 & 0.1761 & 622300.0 \\
2 & 3 & 1 & 0.1761 & 622300.0
\end{tabular} ; By Vlad, from B3LYP
[ angles ]
```



```
[ molecules ]
ION 1
SOL 1000
```


2. Partial initial sample .gro file:

Uranyl ion 3003					
in water					
1ION	Ou1	1	1.250	1.250	1.426
1ION	U	2	1.250	1.250	1.250
1ION	Ou2	3	1.250	1.250	1.074
2SOL	OW	4	0.569	1.275	1.165
2SOL	HW1	5	0.476	1.268	1.128
2SOL	HW2	6	0.580	1.364	1.209
3SOL	OW	7	1.555	1.511	0.703
3SOL	HW1	8	1.498	1.495	0.784
3SOL	HW2	9	1.496	1.521	0.623
4SOL	OW	10	1.743	0.618	0.856
4SOL	HW1	11	1.776	0.712	0.856
4SOL	HW2	12	1.794	0.564	0.922
5SOL	OW	13	1.135	0.703	0.717
5SOL	HW1	14	1.192	0.781	0.692
5SOL	HW2	15	1.075	0.729	0.793

- (used genbox (included in Gromacs package) command to solvate the simulation box)

999 SOL	OW 2995	2.945	2.846	1.949
999 SOL	HW1 2996	2.922	2.899	1.867
999 SOL	HW2 2997	3.026	2.790	1.930
1000 SOL	OW 2998	1.941	3.102	2.515
1000 SOL	HW1 2999	1.940	3.055	2.603
1000 SOL	HW2 3000	2.023	3.074	2.464
1001 SOL	OW 3001	2.290	2.286	2.382
1001 SOL	HW1 3002	2.320	2.214	2.320
1001 SOL	HW2 3003	2.251	2.246	2.465
3.12000	3.12000	3.12000		

3. MDP file for production run, for properties calculations other than hydration free energy (we are not including files for initial energy minimization and equilibration, as they will be trivial for reproducing our results):
```
integrator = md
dt = 0.002
tinit = 0
nsteps = 75000000
nstcomm = 10
pbci = xyz
```

```
constraint_algorithm = lincs
continuation = yes
nstxout = 0
nstvout = 50000
nstfout = 0
nstlog = 5000
nstenergy = 5000
nstxtcout = 20
; Such small frequency of saving trajectories is not necessary to
;reproduce results in this paper.
xtc-precision = 1000
nstlist = 5
ns_type = grid
rlist = 1.48
coulombtype = PME_switch
rcoulomb_switch = 1.1
rcoulomb = 1.2
vdw-type = switch
rvdw-switch = 1.1
rvdw = 1.2
lincs_order = 9
DispCorr = EnerPres ; account for cut-off vdW scheme
```

; PME electrostatics parameters
fourierspacing $=0.12$
fourier_nx $=0$
fourier_ny $=0$
fourier_nz $=0$
pme_order $=6$
ewald_rtol $=1 e-6$

```
optimize_fft = yes
tcoupl = nose-hoover
tc-grps = System
tau_t = 6 ; time constant, in ps
ref_t = 298.15
pcoupl = no
gen_vel = no
```


4. For hydration free energy calculations.

Sample MDP file for production run (we are not including files for initial energy minimization and equilibration, as they will be trivial for reproducing our results):

Note: We used different MDP files for hydration free energy calculations of one ion. First, the ion was in totally decoupled state with water solvents, then it was made coupled from none to van der Waals coupled state (by changing init_lambda from 0 to 1). After this, ion was coupled from van der Waals coupled state to a fully coupled state: VDW+electrostatic interactions (again, by changing init_lambda from 0 to 1). g_bar, included in Gromacs package, was used twice to calculate the free energies of the two processes. The two numbers were added to get the final hydration free energies.

We used init_lambda as $\{0,0.05,0.10, \ldots, 0.95,1.0\}$, and correspondingly varied foreign_lambda. For e.g., for init_lambda = 0.4, foreign_lambda = 0.350 .45 was used; for init_lambda $=0.7$, foreign_lambda $=0.650 .75$ was used; and so on. For init_lambda $=0.0$, foreign_lambda $=0.05$ was used; for init_lambda $=1$, foreign_lambda $=0.95$ was used.

Sample MDP file for changing from no interaction to only VDW interactions between ion and water molecules:

```
integrator = sd ; Langevin dynamics
tinit = 0
dt = 0.002
nsteps = 1000000
comm_mode = Linear
nstcomm = 10
lincs_order =9
nstxout = 10000
nstvout = 20000
```

```
nstfout = 20000
nstlog = 2000
nstenergy = 2000
nstxtcout = 0
xtc-precision = 1000
nstlist = 5 ; default: 10
ns_type = grid
p.bc = xyz
rlist = 1.45
coulombtype = PME-Switch
rcoulomb = 1.2
rcoulomb-switch = 1.1
vdw-type = switch
rvdw = 1.2
rvdw-switch = 1.1
DispCorr = EnerPres
; Spacing for the PME/PPPM FFT grid
fourierspacing = 0.12
pme_order = 6
ewald_rtol = 1e-06
epsilon_surface = 0
ewald_geometry = 3d
optimize_fft = yes
```

; tcoupl is implicitly handled by the sd integrator
tc_grps $=$ system
tau_t $=2.0$
ref_t $=298.15$
Pcoupl $=$ Parrinello-Rahman
tau_p $=2$
compressibility $=4.5 e-05$
ref_p $=1$
gen_vel $=$ no
continuation $=$ yes
; Sample input for free energy control, from no interaction to VDW

```
interactions.
free_energy = yes
init_lambda = 0.30 ; change this from 0 to 1
delta_lambda = 0
foreign_lambda = 0.25 0.35 ; change this according to init_lambda
sc-alpha = 0.5
sc-power = 1.0
sc-sigma = 0.3
couple-moltype = ION ; name of moleculetype to decouple
couple-lambda0 = none ; no interaction between ION and SOLs
couple-lambda1 = vdw ; only vdw interaction
couple-intramol = no
nstdhdl = 100
```

Part of sample MDP file for changing VDW only interaction to full (VDW+electrostatic) interactions between ion and water molecules:

```
;Copy rest of the missing part from above file.
; Sample input for free energy control, from VDW only interaction to
full (VDW+electrostatic) interactions:
free_energy = yes
init_lambda \(=0.85\);change this from 0 to 1
delta_lambda \(=0\)
foreign_lambda \(=0.800 .90\); change this according to init_lambda
sc-alpha \(=0.0\)
sc-power \(=1.0\)
sc-sigma \(=0.0\)
couple-moltype \(=\) ION ; name of moleculetype to decouple
couple-lambda0 \(=\) vdw ; vdw interactions
couple-lambda1 \(=v d w-q\); vdw and charge interactions
couple-intramol = no
nstdhdl \(=100\)
```

