CH₂OO Criegee Biradical Yields Following Photolysis of CH₂I₂ in O₂

Daniel Stone,¹ Mark Blitz,^{1,2,*} Laura Daubney,¹ Trevor Ingham^{1,2} and Paul Seakins^{1,2}

¹ School of Chemistry, University of Leeds

² National Centre for Atmospheric Science, University of Leeds

*m.blitz@leeds.ac.uk

Supplementary Information

Note that reactions and equations are numbered to correspond with those given in the main text.

Experimental Details

We report observations of the yields of CH_2OO and CH_2IO_2 from $CH_2I + O_2$ following laser flash photolysis of $CH_2I_2/N_2/O_2$ gas mixtures as a function of $[N_2]$, $[O_2]$ and total pressure using several complementary methods.

$$CH_2I_2 + hv \rightarrow CH_2I + I$$
 (R1)

Experiments were initially performed to monitor I atom fluorescence, thus enabling inference of the yields of CH₂OO and CH₂IO₂ in the manner described by Huang *et al.*¹ Subsequent experiments monitored the yields of HCHO from reactions of CH₂OO/CH₂IO₂ in the presence of excess SO₂ or NO. SO₂ concentrations were used in the range 2.4×10^{14} cm⁻³ to 1.6×10^{15} cm⁻³, giving pseudo-first-order rate coefficients in the range ~6,000–60,000 s⁻¹. NO concentrations were used in the range 3.6×10^{14} cm⁻³ to 1.7×10^{15} cm⁻³, giving pseudo-first-order rate coefficients in the range ~6,000–60,000 s⁻¹.

CH₂I₂ (Sigma-Aldrich, 99 %) was used as a dilute gas in N₂ either by filling a glass bulb containing liquid CH₂I₂ with N₂ or by bubbling a slow flow of N₂ through liquid CH₂I₂. Reagent gases (SO₂, NO) were prepared at known concentrations in N₂ and stored in glass bulbs. SO₂ (Sigma-Aldrich, 99.9 %), N₂ (BOC, 99.99 %) and O₂ (BOC, 99.999 %) were used as supplied. NO (BOC Special Gases, 99.5 %) was purified prior to use by a series of freeze-pump-thaw cycles. Gases were mixed in a gas manifold and passed into a six-way cross reaction cell at known flow rates (determined by calibrated mass flow controllers). The pressure in the reaction cell was monitored by a capacitance manometer (MKS Instruments, 626A) and controlled by throttling the exit valve to the reaction cell. The total gas flow rate through the reaction cell

was adjusted with total pressure to maintain an approximately constant gas residence time in the cell. All experiments were performed at T = 295 K unless stated otherwise.

For the I atom experiments, and those using NO as co-reagent, initiation of chemistry within the cell was achieved using an excimer laser (KrF, Tui ExciStar M) operating at $\lambda = 248$ nm with typical laser fluence in the range 30 – 80 mJ cm⁻². Experiments in which SO₂ was present as the co-reagent were performed at a photolysis wavelength of 355 nm (typical fluence ~ 150 mJ cm⁻²), generated by frequency tripling the output of a Nd:YAG laser (Spectron Laser Systems) to avoid potential multi-photon photolysis of SO₂ at lower wavelengths.²⁻⁵

A resonance lamp orthogonal to the excimer laser was used to probe the iodine atoms in the reaction cell with $> 10^9$ atom cm⁻³ sensitivity, with subsequent I atom fluorescence detected by a nitrogen purged solar blind channel photomultiplier (CPM, Perkin-Elmer C1311P) orthogonal to both the resonance lamp and the excimer laser. The signal from the CPM was captured and processed using a multichannel scalar (Ortec MCS-pci). Although reaction R1 produces both ground state (${}^{2}P_{3/2}$) and excited state (${}^{2}P_{1/2}$) iodine atoms in approximately equal yield at 248 nm,⁶ the excited state iodine atoms are quenched by O₂ to the ground state ~ 20 times faster than reaction R2 and will thus not influence the observed kinetics or yields.⁷

Production of HCHO from reactions of CH₂OO and CH₂IO₂ was monitored by laser-induced fluorescence (LIF) of HCHO at $\lambda \sim 353.1$ nm.⁸ Approximately 2 to 4 mJ pulse⁻¹ of laser light at ~ 353.1 nm was generated by a dye laser (Lambda Physik, FL3002) operating on DMQ/dioxirane dye and pumped by a 308 nm excimer laser generating ~ 50 mJ pulse⁻¹ (XeCl, Lambda Physik LPX100). The output of the dye laser was passed through the reaction cell in an orthogonal axis to the 248 nm/355 nm photolysis laser output, with HCHO fluorescence detected by a channel photomultiplier (CPM, Perkin-Elmer C1943P). A Perspex filter was used to prevent scattered laser light from the photolysis laser and the LIF excitation laser reaching the CPM. The HCHO fluorescence signal was monitored as a function of time following photolysis of CH₂I₂ by varying the time delay between firing the photolysis laser and the LIF excitation laser through use of a delay generator (SRS DG535). Results from between 5 and 20 photolysis shots were typically averaged prior to analysis.

Kinetic Equations

The production of iodine atoms in R1 and R2, combined with a first-order loss through a combination of reaction and diffusion out of the probe region, can be described by Equation 1, as discussed by Huang *et al.*¹:

$$[\mathbf{I}]_{t} = S_{0} [\exp(-k_{\text{loss}}t)] + \frac{S_{1}k_{2}}{k_{2} - k_{\text{loss}}} [\exp(-k_{\text{loss}}t) - \exp(-k_{2}t)]$$
(Equation 1)

where $[I]_t$ is the iodine atom signal at time *t*, S_0 is the amplitude of the instant photolytic signal resulting from R1, S_1 is the amplitude of the iodine atom signal resulting from the slower growth process occurring after photolysis, k'_2 is the pseudo-first-order rate coefficient for R2 (i.e. $k'_2 = k_2[O_2]$), and k_{loss} is the rate coefficient representing the slow loss of iodine atoms from the detection region *via* reaction or diffusion. Iodine atom production is thus described by an instant photolytic process, followed by a first-order exponential growth process, with a subsequent first-order exponential loss from the system. Figure S1 shows a schematic demonstrating the determination of the CH₂OO yield from the iodine atom signal.

Figure S1: Schematic showing the determination of CH_2OO and CH_2IO_2 yields from the reaction of CH_2I with O_2 (R2) by monitoring the iodine atom production following photolysis of $CH_2I_2/O_2/N_2$ gas mixtures.

A Stern-Volmer analysis of the iodine atom yield (Φ_I) from R2 (i.e. S_1/S_0) gives Equation 2:

$$\frac{1}{\Phi_{I(R2)}} = 1 + \frac{k_{2b}}{k_{2a}} [M]$$
 (Equation 2)

The evolution of HCHO following photolysis of $CH_2I_2/O_2/N_2$ gas mixtures was investigated by Gravestock *et al.*⁹, and it was shown that the production could be approximated to a pseudo-first-order process and, on inclusion of a loss term representing diffusion out of the probe region, could be described by Equation 3:

$$[\text{HCHO}]_t = S_0 [\exp(-k_{\text{loss}}t)] + \frac{S_1 k_g}{k_g - k_{\text{loss}}} [\exp(-k_{\text{loss}}t) - \exp(-k_g t)] \quad \text{(Equation 3)}$$

where $[\text{HCHO}]_t$ is the HCHO signal at time *t*, S_0 is the amplitude of the HCHO signal at time zero, S_1 is the maximum HCHO signal, k'_g is the pseudo-first-order rate coefficient for HCHO growth, and k_{loss} is the rate

coefficient representing the slow loss of HCHO from the detection region *via* diffusion. The S_0 term in Equation 3 accounts for any potential instantaneous production of HCHO following multi-photon dissociation of CH₂I₂, resulting in production ³CH₂ which generates HCHO through reaction with O₂.¹⁰⁻¹³ The HCHO yield from multi-photon dissociation of CH₂I₂ (the S_0 term) is typically no greater than 5 – 10 % of the total HCHO yield. Although the production of HCHO through reactions of CH₂OO and CH₂I₂ is not strictly pseudo-first-order, Gravestock *et al.*⁹ demonstrated that the HCHO signal in this system could be well-described by a single exponential first-order growth process. In order to demonstrate that the yields of HCHO in the CH₂I₂/O₂/N₂ system could be established using Equation 3 we used the numerical integration package Kintecus¹⁴ to simulate HCHO production in the system explicitly, with initial conditions, reactions and rate coefficients as listed in Table S1, and then fitted the simulated data with Equation 3. As shown in Figure S2 and Table S2, the fits to the simulated data faithfully reproduce the yields of HCHO.

Reaction	$k / \text{cm}^3 \text{ s}^{-1}$	Reference
$\mathbf{CH}_{2}\mathbf{I} + \mathbf{O}_{2} \rightarrow \boldsymbol{\beta}(\mathbf{CH}_{2}\mathbf{OO} + \mathbf{I}) + (1\text{-}\boldsymbol{\beta}) \ \mathbf{CH}_{2}\mathbf{IO}_{2}$	1.5×10^{-12}	This work, Gravestock <i>et al.</i> ⁹ , Masaki <i>et al.</i> ¹⁵ ,
		Eskola <i>et al.</i> ¹⁶
$\mathbf{CH_2OO} + \mathbf{I} \rightarrow \mathbf{HCHO} + \mathbf{IO}$	9.3×10^{-11}	Estimated ^a
$CH_2IO_2 + CH_2IO_2 \rightarrow 2 \ CH_2IO + O_2$	$9.0 imes 10^{-11}$	Gravestock <i>et al.</i> ⁹
$\mathbf{CH}_{2}\mathbf{IO}_{2}+\mathbf{I}\rightarrow\mathbf{CH}_{2}\mathbf{IO}+\mathbf{IO}$	3.5×10^{-11}	Gravestock <i>et al.</i> ⁹
$CH_2IO \rightarrow HCHO + I$	$1.0 imes 10^{5}$	Gravestock <i>et al.</i> ⁹

Table S1: Reactions, rate coefficients and initial conditions used to simulate HCHO production following the reaction of CH₂I with O₂. Initial concentrations of CH₂I and O₂ were set to 2.5×10^{12} cm⁻³ and 1×10^{17} cm⁻³, respectively. The parameter β was varied to vary the relative yields of CH₂OO and CH₂IO₂ in the simulations. ^{*a*} The rate coefficient for CH₂OO + I was estimated by modelling HCHO production from CH₂IO₂ + I and CH₂IO₂ + CH₂IO₂ (using the rate coefficients shown in the table from Gravestock *et al.*⁹), followed by re-fitting the simulated data with the HCHO production occurring due to CH₂OO + I and optimising $k_{CH2OO+I}$ to fit to the original simulation.

Figure S2: Simulation of HCHO production following the reaction of CH₂I radicals with O₂ (blue), using parameters in Table S1 for $\beta = 0.75$ (the ratio of CH₂OO to CH₂IO₂) with the fits to Equation 3 shown in red. The HCHO yield is shown relative to the initial CH₂I concentration (2.5×10^{12} cm⁻³). Approximation of the kinetic scheme to pseudo-first-order production of HCHO provides a faithful reproduction of the HCHO yield in the system.

β	Simulated HCHO yield / %	HCHO yield from fits to Equation 3 / %
0	100	99.9
0.25	100	98.3
0.50	100	97.9
0.75	100	98.2
1	100	99.0

Table S2: Yields of HCHO following the reaction of CH₂I radicals with O₂ from simulations, using parameters in Table S1, with those determined from the fits to Equation 3, showing that the yields of HCHO in the system are well-described by Equation 3. β defines the ratio between CH₂OO and CH₂IO₂ produced by CH₂I + O₂.

In the presence of excess SO₂, HCHO production occurs through the rapid reaction of CH₂OO with SO₂ (R7), and the slower growth through reactions of CH₂IO₂, with the rates of the CH₂OO and CH₂IO₂ reactions sufficiently different that biexponential growth is observed. In the presence of excess NO, the situation is reversed, with the rapid growth process occurring as a result of CH₂IO₂ + NO (R8) and the slower growth through the reaction of CH₂OO with iodine atoms. Comparison of the total HCHO yields

with and without co-reagent show that the total yield of HCHO is not influenced by the addition of the coreagent, indicating complete titration of CH_2OO and CH_2IO_2 to HCHO on addition of excess SO_2 or NO. This is shown in Figure S3.

Figure S3: Formation of HCHO in back-to-back experiments in a) the absence of any co-reagent and b) the presence of excess SO_2 . The results indicate that the total HCHO yield is unaffected by the addition of the co-reagent and 100 % of the CH_2I radicals are titrated to HCHO through the reactions of CH_2OO and CH_2IO_2 .

The evolution of HCHO in the SO_2 and NO experiments, incorporating first-order loss of HCHO through diffusion out of the probe region and potential for instantaneous production related to multi-photon dissociation of CH_2I_2 , can be described by Equation 4:

$$[\text{HCHO}]_{t} = S_{0}[\exp(-k_{\text{loss}}t)] + \frac{S_{1}fk_{g1}}{k_{g1}-k_{\text{loss}}}[\exp(-k_{\text{loss}}t) - \exp(-k_{g1}t)]$$
(Equation 4)
$$+ \frac{S_{1}(1-f)k_{g2}}{k_{g2}-k_{\text{loss}}}[\exp(-k_{\text{loss}}t) - \exp(-k_{g2}t)]$$

where [HCHO]_{*t*} is the HCHO signal at time *t*, S_0 is the amplitude of the HCHO signal at time zero, S_1 is the maximum HCHO signal, k'_{g1} is the pseudo-first-order rate coefficient for the fast HCHO growth, k'_{g2} is the pseudo-first-order rate coefficient for the slower HCHO growth, *f* is the fractional contribution of the fast growth process to the total HCHO yield (and hence (1-*f*) is the fractional contribution of the slower growth process to the total HCHO yield), and k_{loss} is the rate coefficient representing the slow loss of HCHO from the detection region *via* diffusion. In the SO₂ experiments the CH₂OO yield is given by *f* and $k'_{g1} = k_7$ [SO₂], while in the NO experiments, the yield of CH₂OO is thus given by (1-*f*) and $k'_{g1} = k_8$ [NO], representing the reaction of CH₂IO₂ with NO. Figures S4 and S5 display this schematically.

Figure S4: Schematic showing the determination of CH_2OO and CH_2IO_2 yields from the reaction of CH_2I with O_2 (R2) by monitoring HCHO production in the presence of excess SO₂. The rapid production of HCHO results from $CH_2OO + SO_2$, while the slower HCHO production results from $CH_2IO_2 + I$ and $CH_2IO_2 + CH_2IO_2$.

Figure S5: Schematic showing the determination of CH_2OO and CH_2IO_2 yields from the reaction of CH_2I with O_2 (R2) by monitoring HCHO production in the presence of excess NO. The rapid production of HCHO results from CH_2IO_2 + NO, while the slower HCHO production results from CH_2OO + I.

Since the slower growth process in the presence of SO_2 and NO, described by k'_{g2} in Equation 4, is not strictly pseudo-first-order we present a number of simulations made using the numerical integration package Kintecus to demonstrate that the approximation of the slower growth process to first-order kinetics does not influence the HCHO yields or kinetics of the fast growth process determined by Equation 4. Initial conditions, reactions and rate coefficients are as given in Table S1, with an additional reaction between

CH₂OO and SO₂, with a rate coefficient of 4×10^{-11} cm³ s⁻¹. The range of [SO₂] in the simulation was varied to give pseudo-first-order rate coefficients (i.e. k'_{g1} in Equation 4) in the range 5,000 to 60,000 s⁻¹, as was observed experimentally in this work. The simulations were fitted with Equation 4, and the fitted parameters compared to the parameters defined in the model. Results are shown in Table S3, demonstrating that the yields of HCHO from the two growth processes (i.e. S_1 and f) and the kinetics of the fast growth process (i.e. k'_{g1}) are faithfully reproduced by fitting with Equation 4. An example plot (for the case with 75 % yield of CH₂OO from CH₂I + O₂ and $k'_{CH2OO+SO2} = 60,000 \text{ s}^{-1}$) is shown in Figure S6. Results from these simulations can be applied analogously to the case where NO is added as co-reagent, reacting with CH₂IO₂ and not CH₂OO as for SO₂. Thus, since the fast HCHO growth processes are significantly faster than the slower growth process (5,000 – 60,000 s⁻¹ compared to ~300 – 500 s⁻¹), the two processes are sufficiently decoupled to enable faithful determination of the HCHO yields and kinetics of the fast growth process.

Simulated β	k' / s^{-1}	Simulated total	Total HCHO yield	k' derived from	β derived from
		HCHO yield / %	derived from fitting to	fitting to	fitting to
			Equation 4 / %	Equation $4 / s^{-1}$	Equation 4
0		100	101.0		0
U	-	100	101.8	-	0
0.25	5000	100	96.1	5500	0.26
0.25	60,000	100	99.1	60,000	0.26
0.50	5000	100	99.7	4827	0.54
0.50	60,000	100	99.1	60,000	0.52
0.75	5000	100	99.9	5030	0.77
0.75	60,000	100	99.9	60,000	0.75
1	5000	100	100	5224	1.00
1	60,000	100	100	59,998	1.00

Table S3: Yields of HCHO following the reaction of CH₂I radicals with O₂ in the presence of excess SO₂ from simulations using parameters in Table S1 with the addition of a reaction between CH₂OO and SO₂ ($k = 4 \times 10^{-11}$ cm³ s⁻¹) and [SO₂] varied to give pseudo-first-order rate coefficients for CH₂OO + SO₂ (k', where $k' = k[SO_2]$) as shown, with the parameters derived from fitting to Equation 4. The HCHO yield is shown relative to the initial CH₂I concentrations (2.5×10^{12} cm⁻³). β defines the ratio between CH₂OO and CH₂IO₂ produced by CH₂I + O₂ ($\beta = 1$ gives 100 % CH₂OO + I), thus the fitted value for β is given by *f* in Equation 4.

Figure S6: Simulated HCHO production (black line) in the presence of SO₂ (using $k' = 60,000 \text{ s}^{-1}$ for a 75 % yield of CH₂OO from CH₂I + O₂) with the results from the fit to Equation 4 (broken red line). The results from the fit are given in Table S3.

Additional Figures

Figure S7: Plot of k'_2 versus [O₂] at 10 Torr total pressure, nitrogen. The slope yields the bimolecular rate constant for reaction between CH₂I and O₂ (R2), equal to $(1.67 \pm 0.04) \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹, 2 σ error.

Figure S8: Stern-Volmer analyses for CH₂OO yields from CH₂I + O₂ as a function of total pressure from a) iodine atom experiments (intercept = 1.08 ± 0.12 ; slope = $(2.28 \pm 0.11) \times 10^{-19}$ cm³); b) SO₂ experiments (intercept = 1.46 ± 0.25 ; slope = $(0.95 \pm 0.24) \times 10^{-19}$ cm³); c) NO experiments (intercept = 1.41 ± 0.30 ; slope = $(1.33 \pm 0.31) \times 10^{-19}$ cm³). Best fit lines are shown in red. Constraining the intercepts to unity for fits to SO₂ and NO data gives slopes of $(1.37 \pm 0.10) \times 10^{-19}$ cm³ and $(1.71 \pm 0.16) \times 10^{-19}$ cm³, respectively. Data shown for SO₂ and NO were taken over a range of [O₂] ($(0.1 - 7.8) \times 10^{18}$ cm⁻³). Error bars are 1σ , with fits weighted to the experimental errors.

References

- 1. H. Huang, A. J. Eskola and C. A. Taatjes, *J. Phys. Chem. Lett.*, 2012, **3**, 3399-3403.
- 2. R. A. Cox, J. Phys. Chem., 1972, 76, 814-&.
- 3. J. L. Jourdain, G. Lebras and J. Combourieu, Int. J. Chem. Kinet., 1979, 11, 569-577.
- 4. K. J. Hughes, M. A. Blitz, M. J. Pilling and S. H. Robertson, *Proc. Combust. Inst.*, 2002, **29**, 2431-2437.
- 5. M. A. Blitz, K. J. Hughes, M. J. Pilling and S. H. Robertson, J. Phys. Chem. A, 2006, **110**, 2996-3009.
- 6. J. B. Koffend and S. R. Leone, *Chem. Phys. Lett.*, 1981, **81**, 136-141.
- 7. D. H. Burde, T. T. Yang and R. A. McFarlane, *Chem. Phys. Lett.*, 1993, **205**, 69-74.
- 8. D. T. Co, T. F. Hanisco, J. G. Anderson and F. N. Keutsch, J. Phys. Chem. A, 2005, 109, 10675-10682.
- 9. T. J. Gravestock, M. A. Blitz, W. J. Bloss and D. E. Heard, *Chem. Phys. Chem*, 2010, **11**, 3928-3941.
- 10. G. Hancock and V. Haverd, Chem. Phys. Lett., 2003, 372, 288-294.
- 11. H. M. Su, W. T. Mao and F. N. Kong, Chem. Phys. Lett., 2000, 322, 21-26.
- 12. U. Bley, F. Temps, H. G. Wagner and M. Wolf, *Ber. Bunsen-Ges. Phys. Chem. Chem. Phys.*, 1992, **96**, 1043-1048.
- 13. R. A. Alvarez and C. B. Moore, J. Phys. Chem., 1994, 98, 174-183.
- 14. J. C. Ianni, *Kintecus, Windows Version 2.80*, <u>www.kintecus.com</u>, 2002.
- 15. A. Masaki, S. Tsunashima and N. Washida, J. Phys. Chem., 1995, 99, 13126-13131.
- 16. A. J. Eskola, D. Wojcik-Pastuszka, E. Ratajczak and R. S. Timonen, *Phys. Chem. Chem. Phys.*, 2006, **8**, 1416-1424.