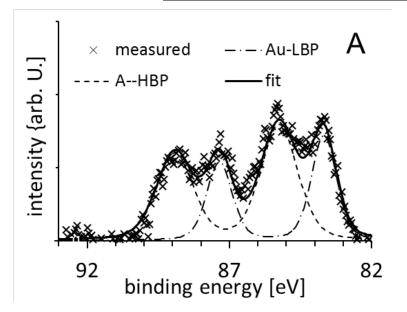
Chemically Synthesised Atomically Precise Gold Clusters Deposited and Activated on Titania


David P. Anderson¹, Rohul Adnan^{1,2}, Jason Alvino³, Oliver Shipper^{3‡}, Baira Donoeva¹,

Jan-Yves Ruzicka¹, Hassan Al Qahtani⁴, Hugh. H. Harris³, Bruce Cowie⁵, Jade B.

Aitken⁶, Vladimir B. Golovko^{*1}, Gregory F. Metha^{*3} and Gunther G. Andersson^{*4}

 ¹The MacDiarmid Institute for Advanced Materials and Nanotechnology, and Department of Chemistry, University of Canterbury, Christchurch 8140, New Zealand.
²Chemistry Department, University of Malaya, 50603 Kuala Lumpur, Malaysia
³School of Chemistry and Physics, The University of Adelaide, Adelaide SA 5005, Australia
⁴Flinders Centre for NanoScale Science and Technology, Flinders University, Adelaide SA 5001, Australia
⁵Australian Synchrotron, 800 Blackburn Road, Clayton Vic-3168, Australia
⁶School of Chemistry, The University of Sydney, Sydney 2006, Australia

[‡]Current address: School of Chemistry, Bielefeld University, Bielefeld, Germany

Electronic supplementary information (ESI)

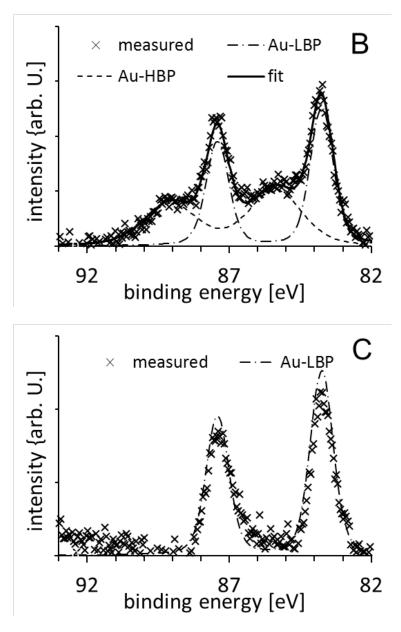


Figure S1: Fits of the Au XPS spectra of Au_8 gold clusters supported on anatase nanoparticles untreated (A), calcined in O_2 (B) and calcined in O_2 and subsequently calcined in H_2 (C).

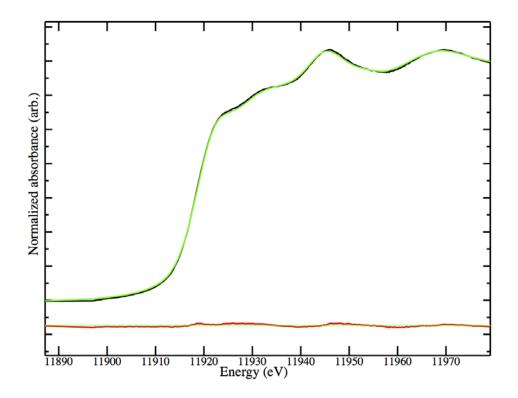


Figure S2: Comparison of Au L_{III} -edge X-ray absorption spectra of Au₉ clusters supported on anatase and then calcined in O₂ at 200°C (black trace) against that of bulk gold (green trace). The difference between the spectra is shown in red and is very close to the base line shown in green at the bottom of the figure.

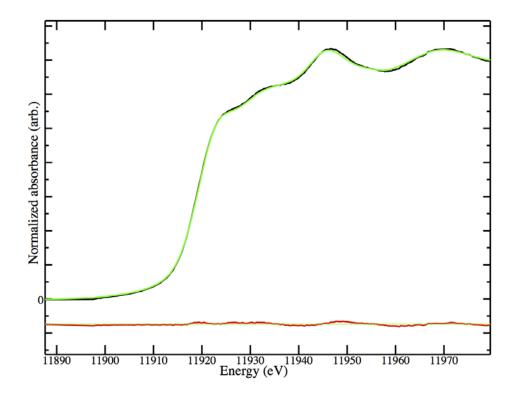


Figure S3: Comparison of Au L_{III} -edge X-ray absorption spectra of Au₉ clusters supported on anatase and then calcined in O₂ and subsequently H₂ at 200°C (black trace) against that of bulk gold (green trace). The difference between the spectra is shown in red and is very close to the base line shown in green at the bottom of the figure.

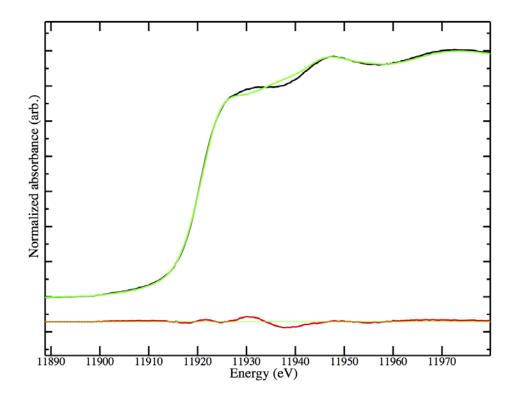


Figure S4: Au L_{III}-edge X-ray absorption spectra of Au₉ clusters deposited on anatase, but untreated (black trace), against that of a fitted linear combination of the spectra of Au₉ clusters diluted in cellulose ($61(\pm 3)$ %) and bulk gold ($39(\pm 3)$ %) (green trace). The residual is shown in red and is close to the base line shown in green at the bottom of the figure.