### Gas-Phase Salt Bridge Interactions between Glutamic Acid and Arginine

Sander Jaeqx<sup>1</sup>, Jos Oomens<sup>1,2</sup>, Anouk M. Rijs<sup>1,\*</sup>

<sup>1</sup>Radboud University Nijmegen, Institute for Molecules and Materials, FELIX facility,

Toernooiveld 7, 6525 ED Nijmegen, The Netherlands

<sup>2</sup>Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park

904, 1098 XH Amsterdam, The Netherlands

\* corresponding author: a.rijs@science.ru.nl

## **Supporting Information**

#### Table of content

**Table SI-2.** Frequencies and intensities of the six deconvoluted Gaussians in the Amide I region in the experimental spectrum of Z-Glu-Arg-NHMe compared to the computed bands for the optimized structures, which are listed in order of increasing relative energy.

 16

**Table SI-3.** ZPE-corrected energies (ZPE), Gibbs free energies at 300 K ( $\Delta$ G) and intramolecular interactions for the optimized structures of Z-Glu-Ala-Arg-NHMe. The employed basis set for the M05-2X and B3LYP functionals is 6-311+G(d,p)......29

**Figure SI-7.** Seven Gaussian functions, each representing a vibrational mode in the Amide I region of Z-Glu-Arg-NHMe (red), the sum of the six Gaussian functions (black), the experimental IR-UV spectrum (blue) and the computed spectrum of the proposed structure (EAR\_Z1) of Z-Glu-Arg-NHMe (green)......**31** 



Figure SI-1. Influence of diffuse functions on the calculated spectra of the systems investigated in this study. The black trace is without diffuse functions added to the basis set, the red trace is with diffuse functions added to the basis set.

|        | M05   | -2X   | B3L   | YP    | Interactions                      |                     |                       |                                               |  |
|--------|-------|-------|-------|-------|-----------------------------------|---------------------|-----------------------|-----------------------------------------------|--|
|        | ZPE   | Gibbs | ZPE   | Gibbs | SC - SC                           | Disp. Int.          | BB - BB               | BB - SC                                       |  |
| ER_Z1  | 0.00  | 0.00  | 4.06  | 5.79  | A                                 | $NH_2$              | C10(O0-N3)            | N1-O                                          |  |
| ER_Z2  | 3.76  | 3.24  | 5.89  | 5.01  | С                                 | N2                  | C10(O0-N3)            | N1-O + O1-H <sub>2</sub> N                    |  |
| ER_C1  | 3.81  | 2.00  | 5.41  | 5.03  | OH - NH                           | NH <sub>2</sub>     | C10(O0-N3)            | N1-O                                          |  |
| ER_Z3  | 4.08  | 4.06  | 5.82  | 8.22  | A                                 | 2 x NH <sub>2</sub> | C10(O0-N3)            | $N1-O^{1} + N2-O^{2} + O2-H_{2}N$             |  |
| ER_Z4  | 4.28  | 0.54  | 0.00  | 0.00  | A                                 |                     | C5(N1-O1) + C7(O1-N3) | N2-O + O2-H <sub>2</sub> N                    |  |
| ER_Z5  | 4.37  | 3.60  | 6.60  | 7.20  | В                                 |                     | C5(N1-O1)             | $N2-O^{1} + N3-O^{2} + O0-(H\epsilon+H_{2}N)$ |  |
| ER_Z6  | 4.46  | 2.71  | 5.14  | 6.34  | В                                 | $H\epsilon + NH_2$  | C7(O1-N3)             | N1-O                                          |  |
| ER_Z7  | 4.56  | 2.57  | 6.55  | 6.89  | A                                 | NH <sub>2</sub>     | C5(N1-O1)             | N2-O + O0-H <sub>2</sub> N                    |  |
| ER_Z8  | 4.85  | 4.27  | 11.21 | 11.97 | С                                 |                     | C5(N1-O1) + C7(O1-N3) | N3-O + O0-H <sub>2</sub> N + O2-Hε            |  |
| ER_Z9  | 5.54  | 3.51  | 2.60  | 1.35  | A                                 |                     | -                     |                                               |  |
| ER_C2  | 6.59  | 4.41  | 5.88  | 3.74  | OH - NH                           | NH <sub>2</sub>     | C7(O1-N3)             | N1-O                                          |  |
| ER_Z10 | 7.84  | 5.23  | 4.64  | 3.82  | Α                                 |                     | C5(N1-O1)             | N2-O <sup>1</sup> +N3-O <sup>2</sup>          |  |
| ER_Z11 | 8.80  | 5.28  | 5.44  | 5.75  | A                                 |                     | C7(O1-N3)             | N2-O + O2-N                                   |  |
| ER_Z12 | 9.08  | 8.07  | 10.02 | 9.55  | A                                 |                     | C10(O0-N3)            | N2-O                                          |  |
| ER_C3  | 9.75  | 6.06  | 8.37  | 7.56  | OH - NH                           | N2                  | C10(O0-N3)            | N1-O                                          |  |
| ER_T1  | 9.98  | 7.92  | 10.83 | 10.76 | NH <sub>2</sub> -OH               | NH <sub>2</sub>     | C5(N1-O1)             | Ν1-Ο + Ο3-ΗΟ + Ν2-Νε                          |  |
| ER_Z13 | 10.13 | 5.68  | 7.00  | 6.18  | С                                 |                     | -                     | N1-O + O1-H <sub>2</sub> N                    |  |
| ER_Z14 | 10.13 | 6.30  | 8.30  | 9.48  | В                                 | $H\epsilon + NH_2$  | -                     | Ν1-Ο + Ο2-Ηε                                  |  |
| ER_Z15 | 10.30 | 6.96  | 9.17  | 9.15  | С                                 |                     | C5(N1-O1)             | $N2-O^{1} + N3-O^{1} + O0-H_{2}N$             |  |
| ER_T2  | 11.12 | 8.16  | 7.66  | 7.29  | O-(H <sub>2</sub> N) <sub>2</sub> |                     | C7(O1-N3              | Ν2-Νε + Ν3-Νε + Ο0-ΗΟ                         |  |
| ER_C4  | 11.41 | 9.52  | 9.76  | 9.41  |                                   |                     | C5(N1-O1) + C7(O1-N3) | O0-HO                                         |  |
| ER_T3  | 12.80 | 10.21 | 11.96 | 10.69 |                                   |                     | C10(O0-N3)            | Ν1-Ο + Ν3-Νε + Ο2-ΗΟ                          |  |
| ER_C5  | 12.90 | 9.87  | 10.48 | 9.84  | OH - NH                           |                     | C5(N1-O1) + C7(O1-N3) | N2-O                                          |  |
| ER_T4  | 13.40 | 9.78  | 13.19 | 12.70 | O-H <sub>2</sub> N                | OH                  |                       | Ν1-Νε + Ν2-Νε + Ο2-Η2Ν                        |  |
| ER_C6  | 13.93 | 9.78  | 8.82  | 8.03  | OH - NH                           |                     | C7(O0-N2) + C7(O1-N3) |                                               |  |
| ER_T5  | 14.53 | 12.09 | 9.98  | 8.32  |                                   |                     | C10(O0-N3)            | N2-Nε + O0-H <sub>2</sub> N + O1-HO           |  |
| ER_C7  | 14.58 | 12.28 | 14.36 | 13.97 | OH - NH                           | N2                  | C7(O0-N2) + C7(O1-N3) | O0-H <sub>2</sub> N                           |  |

Table SI-1. ZPE-corrected energies (ZPE), Gibbs free energies at 300K ( $\Delta G$ ) and intramolecular interactions for the optimized structures of Z-Glu-Arg-NHMe. The employed basis set for the M05-2X and B3LYP functionals is 6-311+G(d,p).

| ER_T6  | 14.77 | 12.39 | 12.11 | 9.49  | OH-NH <sub>2</sub> | NH <sub>2</sub> | C7(O1-N3)             | Ν1-Νε + Ν2-Νε         |
|--------|-------|-------|-------|-------|--------------------|-----------------|-----------------------|-----------------------|
| ER_C8  | 15.58 | 11.61 | 12.16 | 11.07 |                    |                 | C5(N1-O1) + C5(N2-O2) | N2-O + N3-HNη + O2-HO |
| ER_T7  | 16.11 | 14.08 | 15.88 | 14.64 |                    | NH <sub>2</sub> |                       | N2-Nε + O1-HO         |
| ER_T8  | 17.32 | 14.15 | 14.77 | 13.23 |                    |                 | C7(O1-N3)             | N1-H2N + N2-Νε        |
| ER_C9  | 18.69 | 14.61 | 15.69 | 14.08 |                    |                 | C7(O1-N3)             | N1-0                  |
| ER_T9  | 19.09 | 13.10 | 14.15 | 11.55 |                    | NH <sub>2</sub> | C7(O1-N3)             | Ν1-Νε                 |
| ER_C10 | 19.12 | 12.11 | 11.78 | 7.36  |                    |                 | C5(N1-O1) + C7(O1-N3) | N2-O                  |
| ER_Z16 | 20.33 | 18.60 | 16.20 | 16.03 | A                  |                 | C7(O0-N2) + C7(O1-N3) |                       |
| ER_T10 | 20.48 | 17.58 | 19.92 | 19.78 |                    |                 | C7(O0-N2) + C7(O1-N3) | N1-O + O1-HO          |
| ER_C11 | 21.04 | 16.09 | 16.51 | 13.81 |                    |                 | C7(O0-N2) + C7(O1-N3) | O2-H <sub>2</sub> N   |
| ER_C12 | 25.11 | 18.57 | 17.33 | 13.20 |                    |                 | C7(O0-N2) + C7(O1-N3) |                       |

Energies are given in kcal/mol.



ER\_Z3

ER\_Z4













ER\_Z9

ER\_Z7

ER\_Z10











Figure SI-2. Conformations of Z-Glu-Arg-NHMe, optimized with the M05-2x functional employed with the 6-311+G(d,p) basisset.





# IR wavenumbers (cm<sup>-1</sup>)

Figure SI-3. Comparison of the experimental IR-UV ion dip spectrum of Z-Glu-Arg-NHMe (black trace) with spectra calculated for various isomers. The black sticks represent the deconvoluted experimental spectrum. The red traces are the theoretical spectra of the optimized structures of Z-Glu-Arg-NHMe, where the red sticks represent the individual computed frequencies and intensities.







Figure SI-4. Experimental IR-UV ion-dip spectrum of Z-Glu-Arg-NHMe (black trace) and the theoretical spectra of the optimized structures (red trace).

| Exp           | V <sub>1</sub> | l <sub>1</sub> | V <sub>2</sub> | $I_2$        | V <sub>3</sub> | $I_3$           | V <sub>4</sub> | $I_4$        | V <sub>5</sub> | $I_5$        | V <sub>6</sub> | l <sub>6</sub>  |                |                |
|---------------|----------------|----------------|----------------|--------------|----------------|-----------------|----------------|--------------|----------------|--------------|----------------|-----------------|----------------|----------------|
|               | 1634.4         | 0.29           | 1657.3         | 0.18         | 1675.4         | 0.58            | 1698.7         | 0.78         | 1713.5         | 0.6          | 1736.0         | 0.68            |                |                |
| Calculations  | $\Delta v_1$   | $\Delta I_1$   | $\Delta v_2$   | $\Delta I_2$ | $\Delta v_3$   | Δl <sub>3</sub> | $\Delta v_4$   | $\Delta I_4$ | $\Delta v_5$   | $\Delta I_5$ | $\Delta v_6$   | Δl <sub>6</sub> | <u>Σ( Δv )</u> | <u>Σ( Δ  )</u> |
| ER_Z1         | 7.0            | 0.07           | 15.1           | 0.12         | 21.2           | -0.19           | 9.4            | -0.06        | 2.8            | -0.27        | -6.4           | -0.06           | 61.7           | 0.77           |
| ER_Z2         | -9.4           | 0.18           | 9.3            | 0.00         | 9.9            | -0.52           | -4.2           | -0.40        | -16.8          | -0.13        | -30.9          | -0.35           | 80.5           | 1.59           |
| ER_C1         | -18.6          | 0.19           | -10.2          | 0.59         | 18.5           | -0.09           | 0.8            | -0.23        | 0.5            | -0.21        | -17.0          | -0.08           | 65.7           | 1.39           |
| ER_Z3         | 22.1           | 0.00           | 8.7            | -0.11        | 2.3            | 0.15            | -4.5           | -0.72        | -4.9           | 0.40         | 21.9           | 0.08            | 64.3           | 1.47           |
| ER_Z4         | 13.2           | 0.05           | 1.7            | 0.05         | 4.8            | 0.13            | 0.8            | -0.74        | 5.4            | 0.31         | -4.4           | -0.21           | 30.3           | 1.48           |
| ER_Z5         | -2.5           | 0.00           | 26.9           | 0.33         | 12.6           | -0.15           | -2.3           | -0.59        | -10.6          | -0.37        | -26.7          | -0.36           | 81.6           | 1.80           |
| ER_Z6         | -23.7          | -0.04          | 17.9           | 0.03         | 25.4           | -0.32           | 3.5            | -0.36        | -5.3           | -0.18        | 16.9           | -0.30           | 92.7           | 1.23           |
| <u>ER_</u> Z7 | 11.9           | 0.05           | 19.6           | -0.05        | 20.7           | -0.07           | 2.7            | -0.46        | -5.9           | -0.25        | -12.4          | -0.34           | 73.1           | 1.22           |
| ER_Z8         | 0.3            | 0.71           | 6.8            | 0.48         | 5.2            | -0.45           | -9.4           | -0.41        | -16.0          | -0.13        | -21.1          | -0.22           | 58.7           | 2.39           |
| ER_Z9         | 0.9            | -0.04          | 25.7           | -0.05        | 27.7           | -0.27           | 13.5           | -0.30        | -0.3           | -0.20        | 0.8            | -0.36           | 68.9           | 1.21           |
| ER_C2         | -33.6          | -0.03          | 3.0            | 0.48         | -4.4           | -0.29           | 12.3           | -0.33        | 2.2            | 0.01         | 5.1            | -0.15           | 60.7           | 1.29           |
| ER_Z10        | 8.5            | -0.06          | 23.6           | 0.22         | 13.4           | -0.16           | 5.9            | -0.14        | 5.4            | 0.24         | -4.1           | -0.17           | 61.0           | 0.98           |
| ER_Z11        | 11.6           | 0.05           | 9.3            | -0.04        | 3.8            | 0.37            | -7.3           | -0.70        | 3.5            | 0.26         | 27.2           | -0.17           | 62.6           | 1.60           |
| ER_Z12        | 4.6            | -0.12          | 20.2           | -0.08        | 12.4           | -0.13           | 11.5           | -0.26        | 4.3            | -0.03        | -9.9           | -0.48           | 62.9           | 1.10           |
| ER_C3         | -36.8          | -0.01          | -3.9           | 0.33         | 18.8           | 0.03            | 4.7            | -0.40        | -6.1           | -0.23        | 13.4           | -0.29           | 83.6           | 1.29           |
| ERZ13         | -10.4          | 0.45           | 16.3           | 0.14         | 4.2            | -0.41           | -1.3           | -0.21        | -15.2          | -0.16        | -5.1           | -0.19           | 52.4           | 1.55           |
| ER_Z14        | -19.4          | 0.53           | 15.4           | 0.36         | 16.4           | 0.39            | 7.2            | -0.59        | 3.9            | -0.27        | -3.7           | 0.05            | 66.0           | 2.19           |
| ER_Z15        | -2.3           | 0.58           | 17.6           | 0.82         | 14.2           | -0.44           | 0.5            | -0.37        | -10.3          | -0.44        | -16.7          | -0.19           | 61.6           | 2.84           |
| ER_C4         | -34.9          | 0.29           | -6.9           | 0.57         | -8.0           | 0.08            | -12.0          | -0.22        | -10.8          | 0.37         | 22.2           | 0.22            | 94.8           | 1.75           |
| ER_C5         | -26.5          | 0.26           | -3.2           | 0.73         | -0.4           | -0.21           | -1.6           | 0.22         | 2.0            | -0.08        | 6.5            | 0.05            | 40.3           | 1.55           |
| ER_C6         | -19.7          | -0.16          | -7.1           | 0.06         | -2.8           | -0.45           | 1.0            | -0.71        | -11.2          | -0.09        | -21.9          | 0.16            | 63.5           | 1.63           |
| ER_C7         | -10.8          | 0.22           | 8.7            | 0.45         | 2.1            | -0.39           | -9.6           | -0.55        | -9.4           | 0.40         | -3.1           | -0.21           | 43.7           | 2.21           |
| ER_C8         | -12.2          | -0.03          | -13.6          | 0.47         | -4.2           | 0.35            | -17.5          | -0.60        | 14.8           | -0.05        | -4.7           | -0.29           | 67.1           | 1.79           |
| ER_C9         | -21.6          | -0.20          | 8.6            | 0.23         | -4.9           | -0.33           | 18.9           | -0.25        | 29.1           | -0.06        | 14.8           | -0.04           | 97.8           | 1.11           |
| ER_C10        | -22.3          | -0.06          | 1.5            | 0.73         | -9.3           | -0.44           | 13.5           | -0.12        | 21.7           | -0.09        | 46.0           | 0.14            | 114.3          | 1.58           |
| ER_Z16        | 3.2            | 0.09           | 17.7           | 0.13         | 10.5           | -0.39           | -2.4           | -0.45        | 0.9            | 0.26         | -6.6           | 0.16            | 41.4           | 1.48           |
| ER_C11        | -16.9          | 0.27           | 13.5           | 0.51         | 0.4            | -0.22           | -1.1           | -0.02        | 2.1            | 0.14         | 48.6           | -0.05           | 82.6           | 1.21           |
| ER_C12        | -33.8          | -0.14          | 16.7           | 0.09         | 5.7            | -0.10           | 9.8            | -0.51        | 2.2            | 0.22         | 49.4           | -0.15           | 117.7          | 1.22           |

Table SI-2. Frequencies and intensities of the six deconvoluted Gaussians in the Amide I region in the experimental spectrum of Z-Glu-Arg-NHMe compared to the computed bands for the optimized structures, which are listed in order of increasing relative energy.

# Deconvolution and assignment of the Z-Glu-Arg-NHMe spectrum in the Amide I region

The Amide I region of the experimental spectrum of Z-Glu-Arg-NHMe is deconvoluted into 6 Gaussian functions, each Gaussian representing a vibrational mode of Z-Glu-Arg-NHMe. The obtained frequencies and relative intensities are compared with the theoretically obtained frequencies and relative intensities of the DFT calculations. The sum of the deviations in frequencies and relative intensities with respect to the computed ones are given in the last two columns of Table SI-2.

The closest agreement between experimental and calculated frequencies is found for structure ER\_Z4, with the sum of the absolute frequency deviations between theory and experiment being 30 cm<sup>-1</sup>. However, there is a large mismatch between the relative intensities, resulting in a completely different shape of the overall feature (see Supporting Information: Fig SI-3).

The next closest match between computed and experimental frequencies is found for ER\_Z16 with a summed absolute deviation of 41.4 cm<sup>-1</sup>. However, the energy of this structure is calculated to be 20.3 kcal/mol higher than the lowest energy structure. Moreover, this structure also shows a large mismatch in relative intensities. The calculated spectrum of ER\_Z16 is shown together with the experimental spectrum in the bottom panel of Figure 7, showing a strong absorption at 1585 cm<sup>-1</sup> which is not observed in the experimental spectrum.

The experimental spectrum of ER\_C7 in the Amide I region is shown in Figure SI-3. At first glance, there is a fairly good agreement between theory and experiment and only the lowest frequency vibration is shifted to the red by 11 cm<sup>-1</sup>. However, upon comparing the individual vibrations (Table SI-2), one observes a large mismatch in relative intensities. In addition, the experimental spectrum shows a moderately strong band at 1713 cm<sup>-1</sup>, which shifts to 1689 cm<sup>-1</sup>. In the calculated spectrum of ER\_C7 leading to the conclusion that this structure is unlikely to be responsible for the observed spectrum.

The relative intensities are thus important for assigning the experimental spectrum to one of the theoretical structures. The structure with the lowest deviation in relative intensity is ER\_Z1. In addition, the deviation in frequency is also fairly low. The experimental spectrum together with computed spectrum of ER\_Z1 is shown in the top trace of Figure 7 in the 1000 – 1850 cm<sup>-1</sup> range. Besides the good match in the Amide I region, the remainder of the spectrum is also in good agreement with the experimental spectrum. To conclude, the experimental spectrum of Z-Glu-Arg-NHMe is assigned to ER\_Z1.













Figure SI-5. Conformations of Z-Glu-Ala-Arg-NHMe, optimized with the M05-2x functional employed with the 6-311+G(d,p) basis set.









theoretical spectra of the optimized structures for Z-Glu-Ala-Arg-NHMe (red trace).

| 0       | MOS  | 5-2X  | B3LYP |       | Interactions |                      |                         |                                                                 |  |
|---------|------|-------|-------|-------|--------------|----------------------|-------------------------|-----------------------------------------------------------------|--|
|         | ZPE  | Gibbs | ZPE   | Gibbs | SC - SC      | Disp. Int.           | BB - BB                 | BB - SC                                                         |  |
| EAR_Z1  | 0.00 | 0.00  | 2.56  | 5.86  | А            | $2 \times NH_2$      | C10(O0-N3)              | $N1-O^{1} + N2-O^{2}$                                           |  |
| EAR_Z2  | 0.73 | 0.47  | 3.47  | 6.28  | В            | NH <sub>2</sub> + Νε | C10(O0-N3)              | $N1-O^{1} + N2-O^{2}$                                           |  |
| EAR_Z3  | 1.11 | 2.54  | 4.07  | 7.73  | В            | NH <sub>2</sub>      | C10(O0-N3) + C10(O1-N4) | O3-( $H_2N + H\epsilon$ )                                       |  |
| EAR_Z4  | 1.85 | 1.31  | 2.67  | 5.61  | А            | $2 \times NH_2$      | C7(O2-N4)               | $N1-O^{1} + N2-O^{2}$                                           |  |
|         |      |       |       |       |              |                      |                         | $N1-O^{1} + N2-O^{1} + N3-O^{1} + O4-$                          |  |
| EAR_Z5  | 1.90 | 2.09  | 5.16  | 8.20  | A            | 2 x NH <sub>2</sub>  | C10(O1-N4)              | H <sub>2</sub> N                                                |  |
| EAR_Z6  | 2.13 | 1.96  | 4.65  | 7.88  | A            | $2 \times NH_2$      | C10(O1-N4)              | N3-O + O3-H <sub>2</sub> N                                      |  |
| EAR_Z7  | 2.85 | 2.82  | 3.46  | 7.12  | A            | $2 \times NH_2$      | C7(O2-N4)               | $N1-O^{1} + N3-O^{2} + O3-H_{2}N$                               |  |
| EAR_Z8  | 3.03 | 3.42  | 5.67  | 8.88  | В            | NH <sub>2</sub> + Νε | C10(O0-N3)              | $N1-O^1 + N2-O^2$                                               |  |
| EAR_Z9  | 3.91 | 5.82  | 5.93  | 8.89  | В            | NH <sub>2</sub>      | C10(O0-N3) + C10(O1-N4) | N2-0                                                            |  |
|         |      |       |       |       |              |                      |                         | $N1-O^{1} + N_{2}O^{1} + N_{4}O^{1} + O^{1}$                    |  |
| EAR_Z10 | 4.40 | 5.12  | 6.33  | 8.62  | C*           | N2                   |                         | $(H_2N)' + O2 - (H_2N)^2$                                       |  |
| EAR_Z11 | 4.82 | 4.67  | 5.61  | 7.42  | С            |                      | C7(O0-N2) + C10(O1-N4)  | $N3-O + O3-H_2N$                                                |  |
| EAR_Z12 | 5.16 | 5.08  | 7.41  | 8.72  | B            | NH <sub>2</sub> + Νε | C10(O0-N3) + C10(O1-N4) | N1-O <sup>+</sup> + N2-O <sup>2</sup>                           |  |
| EAR_Z13 | 5.52 | 4.30  | 4.25  | 5.01  | A            |                      | C7(O0-N2) + C10(O1-N4)  | N3-O + O3-H <sub>2</sub> N                                      |  |
| EAR_Z14 | 5.52 | 5.73  | 6.67  | 9.20  | В            | HE                   | C7(O1-N3)               | $N1-O^{1} + N2-O^{2} + O2-H_{2}N$                               |  |
| EAR_Z15 | 6.07 | 5.97  | 7.52  | 11.60 | В            |                      | C5(N1-O1) + C7(O1-N3)   | $N2-O + O0-(H_2N)^1 + O3-(H_2N)^2$                              |  |
| EAR_Z16 | 6.10 | 7.21  | 9.13  | 11.29 | C*           | 2 x NH <sub>2</sub>  | C10(O1-N4)              | $N1-O^{1} + N2-O^{1} + N3-O^{1}$                                |  |
| EAR_Z17 | 6.74 | 6.85  | 7.40  | 10.39 | В            | NH <sub>2</sub> + Νε | C7(O2-N4)               | $N1-O^{1} + N3-O^{2}$                                           |  |
|         |      |       |       |       |              |                      |                         | N2-O <sup>1</sup> + N3-O <sup>1</sup> + N4-O <sup>1</sup> + O0- |  |
| EAR_Z18 | 6.79 | 5.86  | 7.45  | 8.46  | A            | NH <sub>2</sub>      | C5(N1-O1)               | H <sub>2</sub> N                                                |  |
| EAR_Z19 | 6.87 | 6.45  | 7.24  | 10.47 | С            | HE                   | C5(N1-O1) + C7(O2-N4)   | $N2-O + O0-(H_2N)^1 + O3-(H_2N)^2$                              |  |
| EAR_Z20 | 7.17 | 6.87  | 4.34  | 6.29  | A            |                      | C10(O1-N4)              | $N1-O^{1} + N3-O^{2} + O3-NH2$                                  |  |
| EAR_Z21 | 7.17 | 4.26  | 3.58  | 3.95  | A            |                      | C5(N1-O1) + C10(O1-N4)  | $N2-O^{1} + N3-O^{2}$                                           |  |
| EAR_Z22 | 7.43 | 8.35  | 9.09  | 12.12 | В            | NH <sub>2</sub> + Νε | C13(O0-N4) + C7(O1-N3)  | $N1-O^{1} + N2-O^{2} + O2-H_{2}N$                               |  |
| EAR_Z23 | 7.46 | 3.02  | 0.00  | 0.00  | А            |                      | C5(N1-O1) + C7(O2-N4)   | $N2-O^{1} + N3-O^{1}$                                           |  |
| EAR_Z24 | 7.74 | 6.30  | 4.28  | 4.71  | A            |                      | C7(O0-N2) + C10(O1-N4)  | N3-O + O3- H <sub>2</sub> N                                     |  |
| EAR_Z25 | 8.01 | 7.10  | 4.50  | 6.40  | В            | NH <sub>2</sub>      | C7(O1-N3) + C7(O2-N4)   | 00- H <sub>2</sub> N                                            |  |
| EAR_Z26 | 9.07 | 8.11  | 8.17  | 10.40 | В            |                      | C10(O0-N3) + C7(N2-O4)  | O1- H <sub>2</sub> N                                            |  |
| EAR_Z27 | 9.49 | 7.20  | 4.96  | 6.16  | A            |                      | C5(N1-O1)               | $N2-O^{1} + N3-O^{1} + O3-H_{2}N$                               |  |

Table SI-3. ZPE-corrected energies (ZPE), Gibbs free energies at 300 K ( $\Delta$ G) and intramolecular interactions for the optimized structures of Z-Glu-Ala-Arg-NHMe. The employed basis set for the M05-2X and B3LYP functionals is 6-311+G(d,p).

| EAR_Z28                                                            | 9.56                                                        | 7.33                                                                 | 4.07                                                        | 5.81                                                        | O-H <sub>2</sub> N |                 | C5(N1-O1) + C7(O2-N4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | O0- H <sub>2</sub> N + N2-O <sup>1</sup> + N3-O <sup>1</sup>                                                                                                                                                               |
|--------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|--------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                    |                                                             |                                                                      |                                                             |                                                             |                    |                 | C7(O0-N2) + C7(O1-N3) +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                            |
| EAR_Z29                                                            | 9.88                                                        | 9.65                                                                 | 8.06                                                        | 10.93                                                       | A                  | $2 \times NH_2$ | C7(O2-N4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N1-O + O3-H₂N                                                                                                                                                                                                              |
| EAR_Z30                                                            | 10.03                                                       | 10.34                                                                | 11.36                                                       | 14.50                                                       | С                  | NH₂ + Νε        | C7(O2-N4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N2-O <sup>1</sup> +N3-O <sup>1</sup> + O0-H <sub>2</sub> N                                                                                                                                                                 |
|                                                                    |                                                             |                                                                      |                                                             |                                                             |                    |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $N2-O'+N3-O'+O_{2}-(H_{2}N)'+O_{3}-$                                                                                                                                                                                       |
| EAR_Z31                                                            | 10.11                                                       | 10.07                                                                | 8.33                                                        | 10.31                                                       | С                  |                 | C5(N1-O1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $(H_2N)^2$                                                                                                                                                                                                                 |
|                                                                    | 44.00                                                       | 44.04                                                                | 10.17                                                       | 44.04                                                       | 0 I I I I          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $OO-(NH_2)_2 + N2-H_2N + N3-N\epsilon +$                                                                                                                                                                                   |
| EAR_11                                                             | 11.96                                                       | 11.01                                                                | 12.17                                                       | 14.04                                                       | $O-H_2N$           |                 | C7(02-N4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>U3-HO</u>                                                                                                                                                                                                               |
| EAR_Z32                                                            | 15.02                                                       | 11.53                                                                | 7.85                                                        | 8.36                                                        | C*                 |                 | C5(N1-O1) + C7(O2-N4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $N2-O' + N3-O' + O3-H_2N$                                                                                                                                                                                                  |
|                                                                    | 10.00                                                       |                                                                      |                                                             |                                                             |                    |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N1-O+ O1- $(H_2N)'$ + O3- $(H_2N)^2$ +                                                                                                                                                                                     |
| EAR_12                                                             | 18.03                                                       | 15.54                                                                | 14.53                                                       | 14.59                                                       |                    |                 | C7(O0-N2) + C7(O2-N4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ν3-Νε                                                                                                                                                                                                                      |
|                                                                    | 10.04                                                       | 45.04                                                                | 40.00                                                       | 40.74                                                       |                    |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $N3-O + O3-HO + N4-N\epsilon + O2-$                                                                                                                                                                                        |
| EAR_13                                                             | 18.04                                                       | 15.21                                                                | 12.26                                                       | 12.74                                                       |                    |                 | C7(00-N2) + C5(N3-O3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                            |
|                                                                    | 10 20                                                       | 17 21                                                                | 15 72                                                       | 17.00                                                       |                    |                 | CE(N1 01)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $N3 - N1 H + N4 - N1 H + O1 - H_2 N + O2 HO$                                                                                                                                                                               |
|                                                                    |                                                             | 1/31                                                                 |                                                             |                                                             |                    |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                            |
|                                                                    | 10.00                                                       | 17.01                                                                | 13.73                                                       | 17.00                                                       |                    |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                            |
| EAR_T4                                                             | 18.52                                                       | 17.87                                                                | 21.37                                                       | 23.85                                                       |                    | NH <sub>2</sub> | C7(O1-N3) + C5(N3-O3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 02-110<br>03-HO + N4-Νε                                                                                                                                                                                                    |
| EAR_T4                                                             | 18.52                                                       | 17.87                                                                | 21.37                                                       | 23.85                                                       |                    | NH <sub>2</sub> | C7(O1-N3) + C5(N3-O3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | O3-HO + N4-Nε<br>N2-O + N3-OH + N4-Nε + O2-                                                                                                                                                                                |
| EAR_T4<br>EAR_T5                                                   | 18.52<br>20.00                                              | 17.87<br>17.87<br>15.59                                              | 21.37<br>15.61                                              | 23.85<br>15.59                                              |                    | NH <sub>2</sub> | C7(O1-N3) + C5(N3-O3)<br>C5(N1-O1) + C5(N3-O3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | O3-HO + N4-Nε<br>N2-O + N3-OH + N4-Nε + O2-<br>H <sub>2</sub> N + O3-HO                                                                                                                                                    |
| EAR_T4<br>EAR_T5<br>EAR_C2                                         | 18.52<br>20.00<br>19.72                                     | 17.87<br>15.59<br>16.17                                              | 21.37<br>15.61<br>14.36                                     | 23.85<br>15.59<br>13.66                                     |                    | NH <sub>2</sub> | C7(O1-N3) + C5(N3-O3)<br>C5(N1-O1) + C5(N3-O3)<br>C7(O1-N3) + C7(O2-N4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $03-HO + N4-N\epsilon$ $N2-O + N3-OH + N4-N\epsilon + O2-H_2N + O3-HO$ $N1-O + O1-H\epsilon + O3-HO$ $020(100+100) + N2(200) + N2(200)$                                                                                    |
| EAR_T4<br>EAR_T5<br>EAR_C2                                         | 18.52<br>20.00<br>19.72                                     | 17.87<br>15.59<br>16.17                                              | 21.37<br>15.61<br>14.36                                     | 23.85<br>15.59<br>13.66                                     |                    | NH <sub>2</sub> | C7(O1-N3) + C5(N3-O3)<br>C5(N1-O1) + C5(N3-O3)<br>C7(O1-N3) + C7(O2-N4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $03-HO + N4-N\varepsilon$ $N2-O + N3-OH + N4-N\varepsilon + O2-H_2N + O3-HO$ $N1-O + O1-H\varepsilon + O3-HO$ $O0-(H_2N + H_2N) + N2-NH_2 + N3-N\varepsilon + O4-HO$                                                       |
| EAR_T4<br>EAR_T5<br>EAR_C2<br>EAR_T6                               | 18.52<br>20.00<br>19.72<br>20.38                            | 17.87<br>15.59<br>16.17<br>18.42                                     | 21.37<br>15.61<br>14.36<br><u>16.66</u>                     | 23.85<br>15.59<br>13.66<br>17.97                            |                    | NH <sub>2</sub> | C7(O1-N3) + C5(N3-O3) $C5(N1-O1) + C5(N3-O3)$ $C7(O1-N3) + C7(O2-N4)$ $C7(O2-N4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $03-HO + N4-N\varepsilon$ $N2-O + N3-OH + N4-N\varepsilon + O2-$ $H_2N + O3-HO$ $N1-O + O1-H\varepsilon + O3-HO$ $O0-(H_2N + H_2N) + N2-NH_2 + N3-$ $N\varepsilon + O4-HO$                                                 |
| EAR_T4<br>EAR_T5<br>EAR_C2<br>EAR_T6                               | 18.52<br>20.00<br>19.72<br>20.38                            | 17.87<br>17.87<br>15.59<br>16.17<br>18.42                            | 10.73<br>21.37<br>15.61<br>14.36<br>16.66                   | 23.85<br>15.59<br>13.66<br>17.97                            |                    | NH <sub>2</sub> | C7(O1-N3) + C5(N3-O3) $C5(N1-O1) + C5(N3-O3)$ $C7(O1-N3) + C7(O2-N4)$ $C7(O2-N4)$ $C7(O2-N4)$ $C11(N1-O3) + C7(O0-N2) + C7(O1-N3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $03-HO + N4-N\varepsilon$ $N2-O + N3-OH + N4-N\varepsilon + O2-$ $H_2N + O3-HO$ $N1-O + O1-H\varepsilon + O3-HO$ $O0-(H_2N + H_2N) + N2-NH_2 + N3-$ $N\varepsilon + O4-HO$                                                 |
| EAR_T4<br>EAR_T5<br>EAR_C2<br>EAR_T6<br>EAR_C3                     | 18.52<br>20.00<br>19.72<br>20.38<br>21.54                   | 17.87<br>17.87<br>15.59<br>16.17<br>18.42<br>18.44                   | 21.37<br>15.61<br>14.36<br>16.66<br>19.60                   | 23.85<br>15.59<br>13.66<br>17.97<br>19.95                   |                    | NH <sub>2</sub> | C7(O1-N3) + C5(N3-O3) $C5(N1-O1) + C5(N3-O3)$ $C7(O1-N3) + C7(O2-N4)$ $C7(O2-N4)$ $C11(N1-O3) + C7(O0-N2) +$ $C7(O1-N3)$ $C7(O1-N3) + C7(O1-N3) + C$ | $03-HO + N4-N\varepsilon$ $N2-O + N3-OH + N4-N\varepsilon + O2-H_2N + O3-HO$ $N1-O + O1-H\varepsilon + O3-HO$ $O0-(H_2N + H_2N) + N2-NH_2 + N3-N\varepsilon + O4-HO$ $O2-H\varepsilon$                                     |
| EAR_T4<br>EAR_T5<br>EAR_C2<br>EAR_T6<br>EAR_C3<br>EAR_C4           | 18.52<br>20.00<br>19.72<br>20.38<br>21.54<br>21.56          | 17.87<br>17.87<br>15.59<br>16.17<br>18.42<br>18.44<br>18.02          | 13.73<br>21.37<br>15.61<br>14.36<br>16.66<br>19.60          | 23.85<br>15.59<br>13.66<br>17.97<br>19.95                   | OH - NH            | NH <sub>2</sub> | C7(O1-N3) + C5(N3-O3) $C5(N1-O1) + C5(N3-O3)$ $C7(O1-N3) + C7(O2-N4)$ $C7(O2-N4)$ $C11(N1-O3) + C7(O0-N2) +$ $C7(O1-N3)$ $C7(O0-N2) + C7(O1-N3) +$ $C7(O2-N4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $03-HO + N4-N\varepsilon$ $N2-O + N3-OH + N4-N\varepsilon + O2-H_2N + O3-HO$ $N1-O + O1-H\varepsilon + O3-HO$ $O0-(H_2N + H_2N) + N2-NH_2 + N3-N\varepsilon + O4-HO$ $O2-H\varepsilon$                                     |
| EAR_T4<br>EAR_T5<br>EAR_C2<br>EAR_T6<br>EAR_C3<br>EAR_C4           | 18.52<br>20.00<br>19.72<br>20.38<br>21.54<br>21.56          | 17.87<br>17.87<br>15.59<br>16.17<br>18.42<br>18.44<br>18.02          | 13.73<br>21.37<br>15.61<br>14.36<br>16.66<br>19.60<br>13.17 | 23.85<br>15.59<br>13.66<br>17.97<br>19.95<br>12.02          | OH - NH            | NH <sub>2</sub> | C7(O1-N3) + C5(N3-O3) $C5(N1-O1) + C5(N3-O3)$ $C7(O1-N3) + C7(O2-N4)$ $C7(O2-N4)$ $C11(N1-O3) + C7(O0-N2) + C7(O1-N3)$ $C7(O0-N2) + C7(O1-N3) + C7(O2-N4)$ $C7(O2-N4)$ $C7(O2-N4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $03-HO + N4-N\varepsilon$ $N2-O + N3-OH + N4-N\varepsilon + O2-H_2N + O3-HO$ $N1-O + O1-H\varepsilon + O3-HO$ $O0-(H_2N + H_2N) + N2-NH_2 + N3-N\varepsilon + O4-HO$ $O2-H\varepsilon$                                     |
| EAR_T4<br>EAR_T5<br>EAR_C2<br>EAR_T6<br>EAR_C3<br>EAR_C4<br>EAR_T7 | 18.52<br>20.00<br>19.72<br>20.38<br>21.54<br>21.56<br>24.06 | 17.87<br>17.87<br>15.59<br>16.17<br>18.42<br>18.44<br>18.02<br>21.24 | 21.37<br>15.61<br>14.36<br>16.66<br>19.60<br>13.17<br>19.33 | 23.85<br>15.59<br>13.66<br>17.97<br>19.95<br>12.02<br>19.18 | OH - NH            | NH <sub>2</sub> | C7(O1-N3) + C5(N3-O3) $C5(N1-O1) + C5(N3-O3)$ $C7(O1-N3) + C7(O2-N4)$ $C7(O2-N4)$ $C11(N1-O3) + C7(O0-N2) +$ $C7(O1-N3)$ $C7(O0-N2) + C7(O1-N3) +$ $C7(O2-N4)$ $C7(O0-N2) + C7(O1-N3) +$ $C5(N3-O3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $03-HO + N4-N\varepsilon$ $N2-O + N3-OH + N4-N\varepsilon + O2-H_2N + O3-HO$ $N1-O + O1-H\varepsilon + O3-HO$ $O0-(H_2N + H_2N) + N2-NH_2 + N3-N\varepsilon + O4-HO$ $O2-H\varepsilon$ $O3-HO + N4-(NH_2)^1 + O2-(H_2N)^2$ |
| EAR_T4<br>EAR_T5<br>EAR_C2<br>EAR_T6<br>EAR_C3<br>EAR_C4<br>EAR_T7 | 18.52<br>20.00<br>19.72<br>20.38<br>21.54<br>21.56<br>24.06 | 17.87<br>15.59<br>16.17<br>18.42<br>18.44<br>18.02<br>21.24          | 21.37<br>15.61<br>14.36<br>16.66<br>19.60<br>13.17<br>19.33 | 23.85<br>15.59<br>13.66<br>17.97<br>19.95<br>12.02<br>19.18 | OH - NH            | NH <sub>2</sub> | C7(O1-N3) + C5(N3-O3) $C5(N1-O1) + C5(N3-O3)$ $C7(O1-N3) + C7(O2-N4)$ $C7(O2-N4)$ $C11(N1-O3) + C7(O0-N2) + C7(O1-N3)$ $C7(O0-N2) + C7(O1-N3) + C7(O2-N4)$ $C7(O0-N2) + C7(O1-N3) + C7(O2-N4)$ $C7(O0-N2) + C7(O1-N3) + C5(N3-O3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $03-HO + N4-N\varepsilon$ $N2-O + N3-OH + N4-N\varepsilon + O2-H_2N + O3-HO$ $N1-O + O1-H\varepsilon + O3-HO$ $O0-(H_2N + H_2N) + N2-NH_2 + N3-N\varepsilon + O4-HO$ $O2-H\varepsilon$ $O3-HO + N4-(NH_2)^1 + O2-(H_2N)^2$ |

Energies are given in kcal/mol.



Figure SI- 7. Seven Gaussian functions, each representing a vibrational mode in the Amide I region of Z-Glu-Arg-NHMe (red), the sum of the six Gaussian functions (black), the experimental IR-UV spectrum (blue) and the computed spectrum of the proposed structure ( EAR\_Z1) of Z-Glu-Arg-NHMe (green).

|          | M05-2X B3LYP |       |       | Interactions |       |          |                                 |                                                              |  |  |
|----------|--------------|-------|-------|--------------|-------|----------|---------------------------------|--------------------------------------------------------------|--|--|
|          |              |       |       |              | SC -  | Disp.    |                                 |                                                              |  |  |
|          | ZPE          | Gibbs | ZPE   | Gibbs        | SC    | Int.     | BB - BB                         | BB - SC                                                      |  |  |
|          |              |       |       |              |       | 2 x      | C10(O0-N3) + C7(O2-N4) + C5(N5- |                                                              |  |  |
| EA3R_Z1  | 0.00         | 0.00  | 0.00  | 0.00         | А     | $NH_2$   | O5)                             | $O4-H_2N + N1-O^1 + N6-O^2$                                  |  |  |
|          |              |       |       |              |       | $NH_2 +$ | C7(O1-N3) + C10(O2-N5) +        |                                                              |  |  |
| EA3R_Z2  | 0.07         | 0.89  | 3.71  | 2.32         | В     | Νε       | C10(O3-N6)                      | N1-O <sup>1</sup> + N4-O <sup>2</sup> + O4- H <sub>2</sub> N |  |  |
|          |              |       |       |              |       |          | C5(N1-O1) + C7(O1-N3) + C10(O1- |                                                              |  |  |
| EA3R_Z3  | 0.36         | 0.49  | 3.93  | 1.15         | А     | $NH_2$   | N4) + C10(O2-N5) + C10(O3-N6)   | $N2-O + O0-(H_2N)^1 + O4-(H_2N)^2$                           |  |  |
|          |              |       |       |              |       |          | C5(N1-O1) + C7(O1-N3) + C10(O2- |                                                              |  |  |
| EA3R_Z4  | 3.18         | 2.03  | 3.69  | -0.75        | А     |          | N5) + C10(O3-N6)                | $N2-O + O0-(H_2N)^1 + O4-(H_2N)^2$                           |  |  |
|          |              |       |       |              |       | $NH_2 +$ | C7(O1-N3) + C10(O2-N5) +        |                                                              |  |  |
| EA3R_Z5  | 3.35         | 3.52  | 5.89  | 3.93         | В     | Νε       | C13(O2-N6)                      | N1-O <sup>1</sup> + N4-O <sup>2</sup> + O4- H <sub>2</sub> N |  |  |
|          |              |       |       |              |       |          | C10(O0-N3) + C7(O2-N4) + C7(O4- |                                                              |  |  |
| EA3R_Z6  | 3.81         | 3.64  | 6.44  | 4.92         | A     |          | N6) + C11(N2-O4)                | N1-O                                                         |  |  |
|          |              |       |       |              |       |          | C5(N1-O1) + C11(N2-O4) + C7(O2- | 4                                                            |  |  |
| EA3R_Z7  | 4.86         | 3.37  | 7.42  | 5.26         | В     |          | N4) + C7(O4-N6)                 | $N3-O + O0-(H_2N)^{T} + O3-(H_2N)^{2}$                       |  |  |
|          |              |       |       |              |       |          |                                 |                                                              |  |  |
| EA3R_Z8  | 8.64         | 5.41  | 8.61  | 4.97         | C     |          | C7(O0-N2) + C10(O2-N5)          | $N3-O + O1-(H_2N)' + O3-(H_2N)^2$                            |  |  |
|          |              |       |       |              | _     |          | C10(O0-N3) + C13(O1-N5) +       |                                                              |  |  |
| EA3R_Z9  | 9.07         | 6.04  | 7.15  | 3.23         | В     |          | C7(O4-N6)                       | O5-(N $\epsilon$ +H <sub>2</sub> N)                          |  |  |
|          |              |       |       |              | -     |          |                                 | $N3-O' + N4-O' + O1-(H_2N)' + O4-$                           |  |  |
| EA3R_Z10 | 9.27         | 6.27  | 4.39  | -0.34        | С     |          | C7(O0-N2) + C7(O3-N5)           | $(H_2N)^2$                                                   |  |  |
|          |              |       | - · - |              |       |          |                                 | N2-O' + N4-O' + N5-O' + O5-N + O0 –                          |  |  |
| EA3R_Z11 | 11.05        | 7.70  | 6.17  | 1.35         | O-NH2 |          | C5(N1-O1) + C7(O4-N6)           | $(H_2N + H_2N)$                                              |  |  |
| /        |              |       |       |              |       |          | C10(O0-N3) + C11(N2-O4) +       |                                                              |  |  |
| EA3R_T1  | 14.84        | 13.95 | 18.09 | 15.00        |       |          | C7(O2-N4)                       | Ν5-Νε + Ν6-Νε + Ν1-Ο + Ο5-ΗΟ                                 |  |  |
|          |              |       |       |              |       |          |                                 | N3-O + N6-NηH + O4-(Hε + H <sub>2</sub> N) +                 |  |  |
| EA3R_C1  | 16.69        | 15.59 | 16.41 | 11.82        |       |          | C7(O0-N2) + C10(O1-N4)          | O5-OH                                                        |  |  |
|          |              |       |       |              |       |          | C10(O0-N3) + C14(N2-O5) +       |                                                              |  |  |
| EA3R_12  | 17.73        | 14.62 | 18.28 | 13.54        |       |          | C/(O2-N4) + C5(N5-O5)           | Ν1-Ο + Ν6-Νε                                                 |  |  |
|          | 47.05        | 15.00 | 47.50 | 10.05        |       |          | C5(N1-O1) + C7(O1-N3) + C7(O2-  |                                                              |  |  |
| EA3R_13  | 17.95        | 15.98 | 17.58 | 13.35        |       |          | N4)                             | 00-H <sub>2</sub> N + N2-Nε + O3-HO + N5-O                   |  |  |

Table SI-4. ZPE-corrected energies (ZPE), Gibbs free energies at 300 K ( $\Delta$ G) and intramolecular interactions for the optimized structures of Z-Glu-Ala-Ala-Ala-Arg-NHMe. The employed basis set for the M05-2X and B3LYP functionals is 6-311G(d,p).

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is C The Owner Societies 2013

|            |          |         |       |       | $NH_2$ | C10(O0-N3) + C10(O1-N4) +      |                   |
|------------|----------|---------|-------|-------|--------|--------------------------------|-------------------|
| EA3R_T4    | 21.31    | 17.84   | 22.20 | 15.98 |        | C10(O2-N5)                     | Ν1-Νε             |
| _          |          |         |       |       |        | C7(O0-N2) + C7(N3-O5) + C7(N4- |                   |
| EA3R_C2    | 33.79    | 28.46   | 24.48 | 16.24 |        | O6)                            | Ο1- H₂N + N3- NηH |
| _          |          |         |       |       |        | C7(00-N2) + C7(01-N3) + C7(02- |                   |
| EA3R_C3    | 40.35    | 30.33   | 28.03 | 18.42 |        | N4) + C7(O3-N5) + C7(O4-N6)    | Ο5-Ηε             |
| Energies a | re given | in kcal | /mol. | •     | "      |                                |                   |











Figure SI-8. Conformations of Z-Glu-Ala-Ala-Ala-Arg-NHMe, optimized with the M05-2x functional employed with the 6-311G(d,p) basis set.





Figure SI-9. Experimental IR-UV ion-dip spectrum of Z-Glu-Ala-Ala-Ala-Arg-NHMe (black trace) and the theoretical spectra of the optimized structures for Z-Glu-Ala-Ala-Ala-Ala-Arg-NHMe (red trace).