Electronic Supplementary Information (ESI)

Light-induced reactivation of O₂-tolerant membrane-bound [Ni-Fe] hydrogenase from the hyperthermophilic bacterium *Aquifex aeolicus* under turnover conditions

Alexandre Ciaccafava^{*a*},Cyrille Hamon^{*b*}, Pascale Infossi^{*a*}, Valérie Marchi^{*b*}, Marie-Thérèse Giudici-Orticoni^{*a*} and Elisabeth Lojou^{*a*}

^a Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée – CNRS-AMU, 31 Chemin Aiguier, 13009 Marseille, France.

^b Université Rennes 1, Institut des Sciences Chimiques de Rennes, CNRS UMR 6226 Campus de Beaulieu, 35042 Rennes, France

Fig. S1 Synthesized scheme gathering the different redox states spectroscopically identified for the [Ni-Fe] active site of O_2 -tolerant and O_2 -sensitive hydrogenases reported from the literature ¹⁻¹⁰. Redox states observed in O_2 -tolerant hydrogenases are highlighted in white policy. Active, inactive and photo-induced states are shown in blue, red and purple respectively. Thin arrows represent redox transitions observed only in O_2 -sensitive hydrogenases. Bold black arrows represent redox transitions observed in both O_2 -tolerant and O_2 -sensitive hydrogenases. Bold grey arrows represent redox transitions specific to O_2 -tolerant hydrogenases. (O*) represents the unknown oxygenic ligand.

Fig. S2 Typical CA experiments for MbH1 under H_2 (blue curve) and under N_2 (grey curve) and CA experiment at bare PG electrode (black curve), with five consecutive illumination/darkness steps represented by the black/purple sequence. CA of MbH1 under H_2 and darkness is superimposed (dotted black curve). These CA experiments are recorded at E = -0.1V vs. Ag/AgCl, 50 mM HEPES, pH 7.2, 60°C, H_2 atm.

- 1. A. L. de Lacey, E. C. Hatchikian, A. Volbeda, M. Frey, J. C. Fontecilla-Camps and V. M. Fernandez, *J. Am. Chem. Soc.*, 1997, **119**, 7181.
- 2. C. Fichtner, C. Laurich, E. Bothe and W. Lubitz, *Biochemistry*, 2006, 45, 9706-9716.
- 3. M. Kampa, M. E. Pandelia, W. Lubitz, M. van Gastel and F. Neese, J. Am. Chem. Soc., 2013, 135, 3915-3925.
- 4. H. Osuka, Y. Shomura, H. Komori, N. Shibata, S. Nagao, Y. Higuchi and S. Hirota, *Biochem. Biophys. Res. Commun.*, 2013, **430**, 284-288.
- 5. M. E. Pandelia, V. Fourmond, P. Tron-Infossi, E. Lojou, P. Bertrand, C. Leger, M. T. Giudici-Orticoni and W. Lubitz, J. Am. Chem. Soc., 2010, **132**, 6991-7004.
- 6. M. E. Pandelia, P. Infossi, M. T. Giudici-Orticoni and W. Lubitz, *Biochemistry*, 2010, 49, 8873-8881.
- 7. M. E. Pandelia, H. Ogata, L. J. Currell, M. Flores and W. Lubitz, J. Biol. Inorg. Chem., 2009, 14, 1227-1241.
- 8. M. E. Pandelia, H. Ogata, L. J. Currell, M. Flores and W. Lubitz, Biochim. Biophys. Acta., 2009, 1797, 304-313.
- H. S. Shafaat, O. Rudiger, H. Ogata and W. Lubitz, *Biochim. Biophys. Acta. 2013 Feb 8. pii: S0005-2728(13)00025-X. doi:* 10.1016/j.bbabio.2013.01.015., 2013.
- E. Siebert, M. Horch, Y. Rippers, J. Fritsch, S. Frielingsdorf, O. Lenz, F. Velazquez Escobar, F. Siebert, L. Paasche, U. Kuhlmann, F. Lendzian, M.-A. Mroginski, I. Zebger and P. Hildebrandt, *Angew. Chem. Int. Ed.*, 2013, 52, 5162.