1

Supporting Information

Chemically Activated Formation of Organic Acids in Reactions of the Criegee Biradical with Aldehydes and Ketones

Amrit Jalan,^{*a*,[†]} Joshua W. Allen,^{*a*,[†]} and William H, Green^{*,*a*} ^{*a*} Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

1 Additional Plots

Figure 1: Predicted rate coefficients k(T, P) versus temperature for •CH₂OO• + HCHO \rightarrow products at 760 Torr N₂.

Figure 2: Predicted rate coefficients k(T, P) versus temperature for •CH₂OO• + CH₃CHO \rightarrow products at 760 Torr N₂.

Figure 3: Predicted rate coefficients k(T, P) versus temperature for •CH₂OO• + CH₃COCH₃ \rightarrow products at 760 Torr N₂.

Figure 4: Normalized sensitivities coefficients, $\frac{\partial \ln Y_i}{\partial E_j}$ of the product yields (Y_i) to the transition state barrier heights (E_j) for the •CH₂OO• + HCHO network at 298 K and 760 Torr, with nitrogen as the bath gas. Each cluster of bars corresponds to the transition state barrier height of one reaction, indicated at left. The bars indicate how each product's yield is affected by adjusting the associated barrier height, and are ordered and colored by product as shown in the legend.

Figure 5: Normalized sensitivities coefficients, $\frac{\partial \ln Y_i}{\partial E_j}$ of the product yields (Y_i) to the transition state barrier heights (E_j) for the •CH₂OO• + HCHO network at 293 K and 4 Torr, with helium as the bath gas. Each cluster of bars corresponds to the transition state barrier height of one reaction, indicated at left. The bars indicate how each product's yield is affected by adjusting the associated barrier height, and are ordered and colored by product as shown in the legend.

Figure 6: Normalized sensitivities coefficients, $\frac{\partial \ln Y_i}{\partial E_j}$ of the product yields (Y_i) to the transition state barrier heights (E_j) for the •CH₂OO• + CH₃CHO network at 293 K and 4 Torr, with helium as the bath gas. Each cluster of bars corresponds to the transition state barrier height of one reaction, indicated at left. The bars indicate how each product's yield is affected by adjusting the associated barrier height, and are ordered and colored by product as shown in the legend.

Figure 7: Normalized sensitivities coefficients, $\frac{\partial \ln Y_i}{\partial E_j}$ of the product yields (Y_i) to the transition state barrier heights (E_j) for the •CH₂OO• + CH₃COCH₃ network at 298 K and 760 Torr, with nitrogen as the bath gas. Each cluster of bars corresponds to the transition state barrier height of one reaction, indicated at left. The bars indicate how each product's yield is affected by adjusting the associated barrier height, and are ordered and colored by product as shown in the legend.

Figure 8: Normalized sensitivities coefficients, $\frac{\partial \ln Y_i}{\partial E_j}$ of the product yields (Y_i) to the transition state barrier heights (E_j) for the •CH₂OO• + CH₃COCH₃ network at 293 K and 4 Torr, with helium as the bath gas. Each cluster of bars corresponds to the transition state barrier height of one reaction, indicated at left. The bars indicate how each product's yield is affected by adjusting the associated barrier height, and are ordered and colored by product as shown in the legend.

Figure 9: Effect of changing the rate of the adduct-forming entrance channel on the product branching ratios for \cdot CH₂OO \cdot + CH₃CHO \rightarrow products at 298 K and 760 Torr N₂.

Figure 10: Effect of changing the rate of the adduct-forming entrance channel on the product branching ratios for \cdot CH₂OO \cdot + CH₃CHO \rightarrow products at 293 K and 4 Torr He.

Figure 11: Effect of changing the rate of the adduct-forming entrance channel on the product branching ratios for \cdot CH₂OO \cdot + CH₃COCH₃ \rightarrow products at 298 K and 760 Torr N₂.

Figure 12: Effect of changing the rate of the adduct-forming entrance channel on the product branching ratios for \cdot CH₂OO \cdot + CH₃COCH₃ \rightarrow products at 293 K and 4 Torr He.

Figure 13: Predicted concentration profiles for the \cdot CH₂OO \cdot + CH₃CHO network at 293 K and 0.4 Torr O₂, using a CH₃COCH₃ mole fraction of 0.01. The yield of SOZ due to collisional stabilization by O₂ is so low that the SOZ profile never appears on this plot, justifying the neglecting of O₂ collisions.

Figure 14: Predicted concentration profiles for the \cdot CH₂OO \cdot + CH₃COCH₃ network at 293 K and 0.4 Torr O₂, using a CH₃COCH₃ mole fraction of 0.01. The yield of SOZ due to collisional stabilization by O₂ is much lower than that due to the He in Taatjes' experiment, justifying the neglecting of O₂ collisions.

2 High-Pressure Limit Rate Coefficients

Table 1: Arrhenius parameters corresponding to high-pressure limit rate coefficients for elementary reactions on the •CH₂OO• + HCHO PES^{*a*}

Reaction	$A(s^{-1})$	n	<i>E</i> _a (kcal/mol)
$SOZ \rightleftharpoons [\bullet CH_2OO \bullet + HCHO]$	2.4×10^{12}	0.85	46.1
$SOZ \rightleftharpoons [HCOOH + HCHO]$	1.1×10^{9}	1.70	40.7
$SOZ \rightleftharpoons HMF$	6.7×10^{7}	1.97	26.9
$HMF \rightleftharpoons [HCOOH + HCHO]$	1.7×10^{12}	-0.03	19.1

^{*a*}The rate coefficient is $k(T) = A(T/1 \text{ [K]})^n \exp(-E_a/RT)$.

Table 2: Arrhenius parameters corresponding to high-pressure limit rate coefficients for elementary reactions on the •CH₂OO• + CH₃CHO PES^{*a*}

Reaction			$A(s^{-1})$	n	<i>E</i> _a (kcal/mol)
SOZ	⇒	$[\bullet CH_2OO \bullet + CH_3CHO]$	4.8×10 ¹²	0.73	45.3
SOZ	⇒	HEF	1.1×10 ⁹	1.64	28.0
SOZ	⇒	HMA	4.0×10^{8}	1.75	29.4
HEF	⇒	[HCOOH + CH ₃ CHO]	1.9×10 ¹⁴	-0.52	17.6
HMA	⇒	[CH ₃ COOH + HCHO]	1.7×10^{13}	-0.24	18.9
SOZ	⇒	[HCOOH + CH ₃ CHO]	2.7×10^{10}	1.33	39.5
SOZ	⇒	[CH ₃ COOH + HCHO]	1.3×10 ⁸	1.90	38.6
SOZ	⇒	[HCOOCH ₃ + HCHO]	8.8×10^{11}	0.99	47.0

^{*a*}The rate coefficient is $k(T) = A(T/1 \text{ [K]})^n \exp(-E_a/RT)$.

Table 3: Arrhenius parameters corresponding to high-pressure limit rate coefficients for elementary reactions on the •CH₂OO• + CH₃COCH₃ PES^a

Reaction	$A(s^{-1})$	n	<i>E</i> _a (kcal/mol)
$SOZ \rightleftharpoons [\bullet CH_2OO \bullet + CH_3COCH_3]$	9.1×10 ¹²	0.62	45.0
$SOZ \rightleftharpoons HIF$	3.2×10 ⁸	1.81	30.2
$HIF \rightleftharpoons [HCOOH + CH_3COCH_3]$	9.1×10^{14}	-0.73	15.6
$SOZ \rightleftharpoons [HCOOH + CH_3COCH_3]$	9.4×10^{10}	1.18	40.9
$SOZ \rightleftharpoons [CH_3COOCH_3 + HCHO]$	6.2×10 ¹¹	0.62	45.0

"The rate coefficient is $k(T) = A(T/1 \text{ [K]})^n \exp(-E_a/RT)$.

13