Supplementary Information for

Supercritically Exfoliated Ultrathin Vanadium Pentoxide Nanosheets with High Rate Capability for Lithium Batteries†

Qinyou An,^{*a*,[‡]} Qiulong Wei,^{*a*,[‡]} Liqiang Mai,^{*a*} Jiayang Fei,^{*b*} Xu Xu,^{*a*} Yunlong Zhao,^{*a*} Mengyu Yan,^{*a*} Pengfei Zhang^{*a*} and Shizhe Huang^{*a*}

^a State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,
WUT-Harvard Joint Nano Key Laboratory, Wuhan University of Technology, Wuhan, 430070, P.
R. China. Fax: +86-027-87644867; Tel: +86-027-87467595; E-mail: mlq518@whut.edu.cn
^b Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia,
Pennsylvania 19104, United States.

‡ These authors contributed equally to this work.

Figure S1. SEM images of the products synthesized under 10 h solvothermal reaction.

Figure S2. SEM images of V_2O_5 microspheres obtained by annealing the solvothermally prepared microflowers (duration 6 h) in air at 400 °C for 2 h.

Figure S3. SEM images of the V_2O_5 ethanol-gels after dying at 70 °C.

Figure S4. Energy dispersive X-ray spectrometric (EDS) mapping of the V_2O_5 microflowers obtained by solvothermal treatment (duration 6 h).

Figure S5. (a) Charge-discharge curves and (b) the cycling performance of the ultrathin V_2O_5 nanosheets, at the current density of 100 mAh g⁻¹ and the charge/discharge potential range from 1.5 to 4.0 V.

Figure S6. (a) Charge-discharge curves and (b) the cycling performance of the amorphous vanadium oxide ultrathin nanosheets, at the current density of 100 mAh g^{-1} and the charge/discharge potential range from 1.5 to 4.0 V. A high initial capacity above 350 mAh g^{-1} is achieved, but the cycleability is poor.

Figure S7. AC impedance plots of ultrathin V_2O_5 nanosheets and V_2O_5 microspheres cathodes, from 0.01 Hz to 100 kHz.

Sample	Voltage range	Capacity (mAh g ⁻¹) / Cycle number	Current rate or density	Rate capacity (mA h g ⁻¹) at relevant Current rate or density
V ₂ O ₅ microspheres ¹	$2.5-4 \ V$	~ 135 / 100	0.2 C	92.2 at 15 C
V_2O_5 / CNTs composites ²	$2-4 \ V$	104 / 200	5 C	169 at 10 C
Porous V ₂ O ₅ nanotubes ³	2.5 – 4 V	105 / 250	2 A g ⁻¹ (~ 13.5 C)	62.5 at 15 A g ⁻¹ (~101 C)
3D porous $V_2O_5^4$	2.5 - 4 V	110 / 200	10 C	86.7 at 56 C (Charge at 1C)
Yolk-shelled V ₂ O ₅ microspheres ⁵	2–4 V	227 / 50	1 C	~150 at 8C
As-prepared V ₂ O ₅ NSs in this work	2.4-4 V	108 / 200	10 C	100 at 15 C

Table S1. The electrochemical performances (cycling performance at relevant current rate or density, and rate capability) of the V_2O_5 NSs and the reported V_2O_5 materials.

References

- 1. Wang, S. Q.; Lu, Z. D.; Wang, D.; Li,C. G.; Chen, C. H.; Yin,Y. D. J. Mater. Chem. 2011, 21, 6365.
- Jia, X. L.; Chen, Z.; Suwarnasarn, A.; Rice, L.; Wang, X. L.; Sohn, H.; Zhang, Q.; Wu, B. M.; Wei, F.; Lu, Y. F. *Energy Environ. Sci.* **2012**, *5*, 6845.
- 3. Wang, H. G.; Ma, D. L.; Huang, Y.; Zhang, X. B. Chem. Eur. J. 2012, 18, 8987.
- 4. Wang, S. Q.; Li, S. R.; Sun, Y.; Feng, X. Y.; Chen, C. H. *Energy Environ. Sci.* **2011**, *4*, 2854.

5. Pan, A. Q.; Wu, H. B.; Yu, L.; Lou, X. W. Angew. Chem. Int. Ed. 2013, 52, 2226.