Supporting Information

For the formula $E_{gap} = E_{bulk} + \frac{h^2}{8R^2} \left(\frac{1}{m_e} + \frac{1}{m_h}\right) - \frac{1.8e^2}{\epsilon R}$

 E_{bulk} is the band gap of bulk materials (E_{CdSe} =1.84 eV, h is Plank constant, R means the radius of quantum dots, m_e is the effective mass of electron (for CdSe, m_e =0.13 m_0 , m_0 =9.1*10⁻³¹ kg), m_h is the effective mass of hole (for CdSe, m_h =0.3 m_0), ε is the semiconductor dielectric constant (for CdSe, ε =9.56), e=1.6*10⁻¹⁹ c.

Then we could get the relationship of E_{gap} with R. By solving the equation, R is 1.35 nm and the diameter is 2.7 nm.

Fig S1 Size distribution histograms of CdSe QDs capped with different ligands: (a) TOPO ligands, (b) I ligands, (c) Br ligands, (d) Cl ligands.

Fig S2 FTIR spectra of the upper clear liquor during ligand exchange: (a) I ligands, (b) Br ligands, (c) Cl ligands.

(a) CdSe QDs with I⁻ ligands

(b) CdSe QDs with Br ligands

Figure S4 Photoluminence spectra of CdSe QDs with different inorganic ligands

(a) PbS QDs with Γ ligands

(b) PbS QDs with Br⁻ ligands

(c) PbS QDs with Cl⁻ ligands Figure S5 EDX results of PbS QDs after ligand exchange

Figure S6 Photographs of TiO_2 films sensitized by CdSe QDs. (a) EPD method of Γ capped QDs; (b) Direct adsorption of TOPO capped QDs.