Table S1. Detailed RMSD of Induced Fit (IF, RMSD between the bound structure and the most-similar apo-structure to this bound structure) and Conformational Selection (CS, average RMSD between the most-similar apo-structure and other apo-structures).

	Complex	Most-similar Apo	IF RMSD (Å)	CS RMSD (Å)
RNA (no tail)	1	1	1.771	1.367
	2	10	1.498	1.366
	3	9	2.712	1.810
	4	10	1.880	1.366
	5	9	2.123	1.810
	6	1	1.738	1.367
	7	1	1.550	1.367
	8	9	1.776	1.810
	9	1	1.586	1.367
	10	1	1.502	1.367
RNA (with tail)	1	5	3.298	2.954
	2	10	2.570	3.461
	3	9	3.323	3.461
	4	10	2.367	2.719
	5	9	2.471	3.423
	6	1	2.113	2.954
	7	10	2.204	3.204
	8	1	2.612	2.719
	9	10	1.944	3.423
	10	1	1.994	2.954
Protein	1	1	2.139	2.268
	2	9	2.207	2.486
	3	1	1.826	2.268
	4	1	1.798	2.268
	5	7	1.944	2.313
	6	4	1.863	2.380
	7	1	1.723	2.268
	8	7	1.815	2.313
	9	7	2.100	2.313
	10	7	2.397	2.313

Table S2. Detailed populations and standard deviations of all the interactions of

population higher than 0.2.

H Bond	Population	sd	Hydrophobic	Population	sd
18RU_O2P_32THR_N	0.999	0.001	90VAL_17RG	0.963	0.080
18RU_01P_93ALA_N	0.997	0.007	88ILE_17RG	0.847	0.164
34GLU_OE2_19RG_N1	0.990	0.023	90VAL_16RC	0.401	0.329
19RG_06_34GLU_N	0.982	0.017	91PRO_16RC	0.275	0.378
18RU_O2P_32THR_OG1	0.981	0.024			
34GLU_OE2_6RG_O2'	0.967	0.086			
19RG_06_33ASN_N	0.929	0.046			
17RG_N7_30LYS_NZ	0.858	0.284			
30LYS_NZ_6RG_O2'	0.856	0.242			
6RG_O2'_30LYS_NZ	0.856	0.242	Electrostatic	Population	sd
34GLU_OE2_19RG_N2	0.833	0.083	29LYS_6RG	1.000	0.000
7RA_O2P_30LYS_NZ	0.830	0.249	30LYS_7RA	1.000	0.000
5RU_O2P_41ARG_NH2	0.818	0.274	37LYS_4RC	1.000	0.000
4RC_O1P_41ARG_NH2	0.773	0.153	37LYS_5RU	1.000	0.000
6RG_06_33ASN_ND2	0.719	0.121	79LYS_18RU	1.000	0.000
18RU_04_54ASP_N	0.715	0.180	30LYS_18RU	1.000	0.000
17RG_O6_30LYS_NZ	0.713	0.305	29LYS_5RU	0.999	0.002
5RU_O2P_41ARG_NH1	0.672	0.224	41ARG_5RU	0.998	0.005
5RU_O1P_41ARG_NH1	0.670	0.199	41ARG_4RC	0.998	0.005
6RG_O3'_30LYS_NZ	0.669	0.258	37LYS_3RU	0.993	0.010
19RG_06_32THR_N	0.574	0.152	79LYS_17RG	0.959	0.036
34GLU_OE1_6RG_O2'	0.541	0.169	29LYS_7RA	0.957	0.121
18RU_O4_79LYS_NZ	0.533	0.160	30LYS_6RG	0.938	0.134
6RG_06_37LYS_NZ	0.511	0.331	41ARG_6RG	0.925	0.188
4RC_O2P_37LYS_NZ	0.468	0.254	27LYS_6RG	0.855	0.114
6RG_O2P_29LYS_NZ	0.398	0.190	37LYS_6RG	0.841	0.232
4RC_O5'_41ARG_NH2	0.378	0.154	41ARG_3RU	0.621	0.126
54ASP_O_18RU_N3	0.273	0.367	30LYS_8RC	0.575	0.194
4RC_O3'_41ARG_NH2	0.202	0.104	27LYS_7RA	0.371	0.203

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is O The Owner Societies 2013

A

Figure S1. Structures of diRNP and cross-RNP models. (A) The diRNP model was manually constructed based on previous EM results and Xue's docking. (B and C) In diRNP model, fibrillarin (blue) has "*cis*" position and "*trans*" position, which are both far away from substrate rRNA (yellow). The transition of fibrillarin from "*trans*" position to "*Af*" position enables the methylation catalyse (Methyl donor, SAM in ball-stick representation, is very close to substrate rRNA). However, L7Ae (cyan) is overlapped by fibrillarin, indicating it also has a reposition. The reposition of fibrillarin might be under the hinge motion of sRNA, as well as L7Ae. Additionally, K-turn sRNA is in red cartoon representation.

Figure S1. RMSD to the start structure at 298K for bound (black) and apo-sRNA (red) and apo-L7Ae (blue).

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2013

Figure S2. Binding mechanism evaluation for L7Ae binding.

Figure S3. Alignment of 1RLG (green), 3NMU (orange), 3NVK (cyan) and 3NVI (magenta), basing on all C α atoms, shown in front-sight and lateral-sight.

Figure S4. Distances *vs.* time of two hydrogen bonds both between G19 and N33, red line for G19O6-N33N, black for G19N7-N33N, and blue line for the hydrogen bond

threshold.

Figure S5. Time evolution of Qb for U18G mutant complex. Fitting of first order exponential function was shown in red line. Unfolding half time and correlation coefficient were also listed.

Figure S6. Head view and lateral view of alignment of average structure in transition state (TS) ensembles. Green for U18G mutant bound sRNA and magenta for WT

complex.