Supporting Information

Jitendriya Swain, Monalisa Mohapatra, Santosh R Borkar, Indrapal Singh Aidhen* and Ashok Kumar Mishra*

Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036

Figure S1. Response of the fluorescence intensity of FTY720 in water at different wavelength [FTY720] = $200 \,\mu$ M.

Figure S2. Response of the fluorescence intensity of 1-naphthol in water with increase in concentration of FTY720 at (A) 13 °C (B) 35 °C ($\lambda_{ex} = 290$ nm, $\lambda_{em} = 470$ nm). [1-Naphthol] = 4 μ M.

Figure S3. Response of the absorbance of 1-naphthol in water with increase in concentration of FTY720.[1-naphthol]= 100μ M

Figure S4.Response of fluorescence intensity of pyrene with increase in concentration of CPC quencher.[Pyrene]=4 μ M, λ_{ex} =335 nm.

Table S1. Temperature dependence fluorescence lifetime data of NpOH* (A) absence of FTY720 and (B) presence of FTY720 ([FTY720] =150 μ M), (λ_{ex} = 295 nm, λ_{em} = 370 nm) in DMPC liposome. [DMPC] =0.4 mM, [1-Naphthol] =4 μ M. (Error = ± 5 %)

۸	١
A	J

B)

m				2					2
Temp.	τ_{s} (ns)	τ_1 (ns)	τ_{avg}	χ	Temp.	τ_{s} (ns)	τ_{l} (ns)	τ_{avg}	χ
(°C)	(α_1)	(α_2)	(ns)		(°C)	(α_1)	(α_2)	(ns)	
13	2.99	6.99	6.44	1.13	13	2.69	6.62	6.03	1.38
	(0.27)	(0.73)				(0.30)	(0.70)		
16	2.94	6.91	6.34	1.43	16	2.73	6.57	5.98	1.21
	(0.28)	(0.72)				(0.30)	(0.70)		
19	3.05	6.84	6.23	1.22	19	2.88	6.38	5.78	1.27
	(0.30)	(0.70)				(0.31)	(0.69)		
21	3.07	6.73	6.10	1.14	21	3.02	6.11	5.52	1.20
	(0.31)	(0.69)				(0.32)	(0.68)		
22	3.08	6.63	5.99	1.22	22	3.06	6.09	5.42	1.24
	(0.32)	(0.68)				(0.36)	(0.64)		
23	3.07	6.45	5.80	1.28	23	3.03	6.00	5.31	1.14
	(0.33)	(0.67)				(0.37)	(0.63)		
25	3.02	6.25	5.58	1.07	25	3.03	5.91	5.15	1.24
	(0.35)	(0.65)				(0.41)	(0.59)		
27	2.88	6.14	5.45	1.24	27	2.93	5.79	5.04	1.10
	(0.36)	(0.64)				(0.41)	(0.59)		
30	2.89	6.07	5.30	1.21	30	2.52	5.27	4.56	1.22
	(0.40)	(0.60)				(0.42)	(0.58)		
33	2.79	5.90	5.12	1.22	33	2.57	5.33	4.59	1.23
	(0.41)	(0.59)				(0.43)	(0.57)		

Table S2. Fluorescence lifetime data of NpO^{-*} in water (λ_{ex} =295 nm, λ_{em} =470 nm) with the increase in FTY720 at 13°C. [1-Naphthol]=4 μ M. (Error = ± 5 %)

[FTY720]µM	τ (ns)	χ^2
0	8.41	1.20
50	8.32	1.20
150	8.27	1.24

Table S3. Temperature dependence fluorescence lifetime data of NpO^{-*} (A) absence of FTY720 and (B) presence of FTY720 ([FTY720] =150 μ M), (λ_{ex} = 295 nm, λ_{em} = 460 nm) in DMPC liposome. [DMPC] =0.4 mM, [1-Naphthol] =4 μ M. (Error = ± 5 %)

A)

B)

Temp.	$\tau_{s}(ns)$	$\tau_1(ns)$	$\tau_{\rm avg}$	χ^2	Temp.	$\tau_{s}(ns)$	τ_{l} (ns)	$\tau_{av\sigma}$	γ^2
(°C)	(α ₁)	(α ₂)	(ns)		°C)	(α ₁)	(α ₂)	(ns)	~
13	8.30	21.43	16.47	1.21	13	7.90	19.06	13.01	1.26
	(0.61)	(0.31)				(0.74)	(0.26)		
16	8.26	21.16	16.39	1.21	16	7.75	18.22	13.00	1.35
	(0.60)	(0.40)				(0.70)	(0.30)		
19	8.27	20.74	16.31	1.21	19	7.68	17.68	13.21	1.22
	(0.58)	(0.42)				(0.65)	(0.35)		
21	8.37	20.66	16.47	1.21	21	8.25	17.91	14.69	1.11
	(0.56)	(0.44)				(0.52)	(0.48)		
22	8.29	20.34	16.54	1.21	22	8.65	17.98	14.69	1.10
	(0.53)	(0.47)				(0.53)	(0.47)		
23	8.59	19.22	16.70	1.28	23	8.69	17.75	14.52	1.19
	(0.41)	(0.59)				(0.53)	(0.47)		
25	8.94	19.48	16.93	1.13	25	9.03	17.86	14.56	1.21
	(0.41)	(0.59)				(0.56)	(0.44)		
27	9.00	19.16	16.66	1.21	27	8.99	17.29	13.98	1.22
	(0.42)	(0.58)				(0.56)	(0.44)		
30	8.96	18.91	16.21	1.08	30	8.55	16.70	12.90	1.29
	(0.44)	(0.56)				(0.58)	(0.42)		
33	8.79	18.67	15.81	1.25	33	8.78	16.69	12.89	1.21
	(0.46)	(0.54)				(0.63)	(0.36)		

Figure S5: Response of the fluorescence intensity of DPH in water with 200 μ M of FTY720 and in DMPC liposome media. ($\lambda_{ex} = 370 \text{ nm}, \lambda_{em} = 428 \text{ nm}$). [DMPC]=0.4mM, [DPH] = 4 μ M.

Characterisation and purity of Fingolimod:

Analytically pure **A** (the ultimate precursor of FTY720) prepared according to our reported procedure¹ was used for the preparation of FTY720.

A solution of **A** (0.580 g, 1.42 mmol) in CH₂Cl₂ (6 mL) and TFA (1.1 mL), was stirred at room temperature for 12 h. The reaction mixture was quenched with sat. aq NaHCO₃ soln (5 mL) and then extracted with EtOAc (60 mL). The organic layer was washed with brine (40 mL), dried over Na₂SO₄, filtered, and concentrated in vacuo. The residue obtained was then dissolved in dry THF (10 mL). To this solution ethereal HCl solution (2 mL) was added at 0 °C and the resulting mixture was warmed to room temperature and stirred for 3 h. The solution was concentrated under reduced pressure to afford the desired product as solid. This solid was thoroughly washed with dry ether (3 x 10 mL) and dried under high vacuum to afford FTY720 (0.412 g, 90% over two steps). The material was directly used for the studies, after recording ¹H and ¹³C NMR spectrum.

tert-butyl 2,2-dimethyl-5-(4-octylphenethyl)-1,3-dioxan-5-ylcarbamate (A) :

Colorless solid, m.p.: 62-64 °C.; R_f 0.6 (hexanes: ethyl acetate, 7:3); IR (CHCl₃): 2921, 2851, 1720, 1495, 1166 cm⁻¹; ¹H NMR [CDCl₃, 400 MHz] δ : 0.80 (t, 3H, *J* = 6.8 Hz, -CH₃), 1.18-1.22 (m, 10H, 5 x CH₂), 1.34 (s, 3H, -CCH₃), 1.36 (s, 3H, -CCH₃), 1.40 (s, 9H, -C(CH₃)₃), 1.49-1.52 (m, 2H, -CH₂), 1.88-1.92 (m, 2H, -CCH₂), 2.43-2.49 (m, 4H, 2 x ArCH₂), 3.60 (d, 2H, *J* = 11.6 Hz, -OCH₂), 3.82 (d, 2H, *J* = 11.6 Hz, -OCH₂), 4.91 (bs, 1H, -NH), 7.00 (s, 4H, ArH). ¹³C NMR [CDCl₃, 100 MHz] δ : 13.1, 18.9, 21.6, 26.3, 27.4, 27.7, 28.3, 28.5, 30.5, 30.9, 32.8, 34.5, 50.8, 65.4, 78.3, 97.4, 127.0, 127.2, 137.8, 139.3, 153.7.; HRMS (ESI): Calcd for C₂₇H₄₆NO₄Na ([M+Na]⁺): 470.3246. Found: 470.3248.

2-amino-2-(4-octylphenethyl)propane-1,3-diol hydrochloride (FTY720)

Colorless solid; 90% (over two steps); m.p.: 103-105 °C; R_f 0.4 (methanol: chloroform, 1:9); IR (CHCl₃): 2921, 2851, 1720, 1495, 1166 cm⁻¹; ¹H NMR [DMSO-d₆, 400 MHz] δ : 0.85 (t, 3H, J = 6.8 Hz, -CH₃), 1.23-1.26 (m, 10H, 5 x CH₂), 1.53-1.54 (m, 2H, -CH₂), 1.76-1.80 (m, 2H, -CCH₂), 2.54-2.59 (m, 4H, 2 x ArCH₂), 3.52 (d, 4H, J = 4.8 Hz, -OCH₂), 5.39 (d, 2H, J = 4.8 Hz, 2 x -OH), 7.10 (s, 4H, ArH), 7.89 (bs, 3H, 3 x -NH). ¹³C NMR [DMSO-d₆, 125 MHz] δ : 13.9, 22.1, 27.9, 28.7, 28.8, 31.1, 31.3, 33.2, 34.7, 60.3, 61.0, 128.0, 128.2, 138.8, 139.8.; MS (ESI): 308 ([M-CI]⁺).

[1. Sivaraman, B.; Senthilmurugan A.; Aidhen, I. S. Synlett 2007, 2841-2846.]

¹H NMR (400 MHz) of *tert*-butyl 2,2-dimethyl-5-(4-octylphenethyl)-1,3-dioxan-5-ylcarbamate (A)

¹³C NMR (100 MHz) of *tert*-butyl 2,2-dimethyl-5-(4-octylphenethyl)-1,3-dioxan-5-ylcarbamate (A)

¹³C NMR (125 MHz) of 2-amino-2-(4-octylphenethyl)propane-1,3-diol hydrochloride (FTY720)

Figure S6. Schematic representation of interaction of FTY720 with DMPC lipid bilayer:

Lipid Bilayer

FTY720 Incorporated Lipid Bilayer