SUPPLEMENTARY INFORMATION

D-B3LYP/6-31++G** structures, relative energies (kcal/mol) $\nu_{\Box\Box\Box}$ and $\nu O^{bu}H$ frequencies of the So ground state of the complexes of oFE_S, pFE_S and E_R with butan-2-ol.

	Es-Bus (all frequencies are scaled by0.96)				
	Ent (Kcal/mol)	Low Frequency (cm ⁻¹)	High Frequencies (cm.1)		
A	0.00	28.2	3463.6 3624.1	***	
в	0.06	23.4	3455.2 3633.9	the the	
с	0.06	25.2	3423.6 3651.8	++++ tot	
D	0.54	18.1	3442.0 3647.9	XXX	
E	0.67	18.0	3423.9 3647.9	HA TOTO	

Non-fluorinated complexes: homochiral

F	0.87	16.2	3456.2 3653.4	A. A.
G	0.91	17.1	3461.9 3612.6	AA SZG
н	1.58	14.5	3433.1 3673.8	++++++++++++++++++++++++++++++++++++++

Non-fluorinated complexes: heterochiral

	Erel (Kcal/mol)	Low Frequency (cm ⁻¹)	High Frequencies (cm. ₁)	
A	0.00	29.0	3442.7 3634.4	HA HA
в	0.28	28.5	3473.2 3627.2	to the second se
D	0.68	21.7	3482.6 3601.9	++++
c	0.68	15.3	3441.7 3673.0	XXX
E	0.68	11.2	3449.8 3637.9	the the

Es-BUR (All frequencies are scaled by 0.96)

F	1.05	29.2	3444.8 3683.5	the the
G	1.08	25.6	3446.6 3650.9	the the
н	1.26	21.7	3441.3 3678.3	the state

Ortho-fluorinated complexes: homochiral

	^{zp∈} E _{rel} (Kcal/mol)	Low Frequencies (cm-1)	High Frequencies (cm-1)
A	0.00	40 53 62 67 83 96	3433 3661
В	0.37	25 36 50 61 77 84	3471 3635
С	0.57	28 41 49 55 77 90	3421 3652
D	1.04	17 46 55 78 87	3462 3655
E	1.14	12 31 51 56 77 86	3491 3659

oFEs-Bs

F	1.19	7 37 46 52 69 81	3500 3684
G	1.42	18 34 48 60 69 87	3472 3650
Н	1.45	23 41 57 60 77	3426 3675
I	1.51	22 49 60 66 82 92	3468 3617

* All frequencies are scaled by 0.96

Ortho-fluorinated complexes: heterochiral

	æE⊫ (Kcal/mol) ·	Low Frequency (cm ⁻¹)	High Frequency (cm-1)	
A	0.00	19.9	3452 3643	the state
в	0.75	30.1	3454 3684	++++
с	0.77	30.5	3459 3653	***
D	0.95	29.2	3446 3675	XX
E	1.11	32.6	3500 3600	the second
F	1.14	26.8	3479 3661	
G	1.21	11.2 / 29.0	3465 3681	- the
н	1.28	13.8 / 34.4	3484 3640	-
I	1.42	19.3	3428 3654	-

oFEs-BuR

* All frequencies are scaled by 0.96

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2013

Para-fluorinated complexes: homochiral

pFEs-Bus

	E _{REL} (kcal/mol)	
A	+ 0.00	A A
В	+0.32	HAN A
с	+0.47	+ A
D	+0.98	the the

Para-fluorinated complexes: heterochiral

pFE_SBu_R

	E _{REL} (kcal/mol)	
A	+ 0.00	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
В	+0.06	A A A

с	+0.24	A A
D	+0.63	X A
E	+0.70	A A A A A A A A A A A A A A A A A A A
F	+1.04	the state

Table S1: energy components analysis: contribution of hydrogen bond, CH $\cdots\pi$, OH $\cdots\pi$, CH \cdots F
interactions to the total energy as calculated by MM3 force field at the D-B3LYP/6-31++G**
minimum energy geometries.

Conformer	ОН…О	СΗ…π	ΟΗ…π	CH···F
oA _{hetero}	3.18	0.57	0.79	0.25
oB _{hetero}	3.12	0.60	0.02	0.11
oA _{homo}	2.95	0.11	0.57	0.19
$\mathrm{oB}_{\mathrm{homo}}$	3.32	0.16	0.90	0.14
pA _{hetero}	3.10	0.22	0.77	0.16
pB_{hetero}	3.40	0.54	1.05	0.15
pC_{hetero}	3.07	0.59	0.80	0.12
pA _{homo}	3.27	0.78	0.99	0.2
pB_{homo}	3.43	0.82	1.06	0.12
A _{hetero}	3.06	0.62	0.82	
B _{hetero}	3.42	0.57	1.07	
C _{hetero}	3.26	0.32	0.30	
D _{hetero}	3.39	0.79	1.07	
A _{homo}	3.26	0.29	0.98	
\mathbf{B}_{homo}	3.25	0.88	0.95	
D _{homo}	3.16	0.63	0.13	