Theoretical Investigations into the Nucleation of Silica Growth in Basic Solution Part II – Derivation and Benchmarking of a First Principles Kinetic Model of Solution Chemistry. Supplementary Information.

Grant J. McIntosh

School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand

Table S1. Full kinetic parameters; pre-exponential factor in L-mol-s-K units, activation energies are in kJ mol⁻¹; [-] denotes a site of negative charge in a particular cluster.

Α	T^m	E_a	Reaction
1.46×10^{45}	-12.227	117.0	$2Si(OH)_4 = > (OH)_3Si-O-Si(OH)_3.H_2O$
6.62×10^{28}	-6.574	135.4	$(OH)_3Si-O-Si(OH)_3.H_2O ==> 2Si(OH)_4$
1.45×10^{02}	2.570	32.4	$Si(OH)_4 + Si[O-](OH)_3 ==> Si[-](OH)_4-O-Si(OH)_3$
4.68×10 ¹¹	0.411	35.6	$Si[-](OH)_4\text{-}O\text{-}Si(OH)_3 = => Si(OH)_4 + Si[O\text{-}](OH)_3$
3.89×10 ¹²	-0.443	38.2	$Si[-](OH)_4\text{-}O\text{-}Si(OH)_3 ==> [O\text{-}](OH)_2Si\text{-}O\text{-}Si(OH)_3\text{-}H_2O$
1.00×10^{12}	0.410	81.6	$[O-](OH)_2Si-O-Si(OH)_3,H_2O ==> Si[-](OH)_4-O-Si(OH)_3$
# Trimer			
1.08×10 ¹³	0	18.0	$Si(OH)_4 + [O-](OH)_2Si-O-Si(OH)_3.H_2O = => Si(OH)_4[O-](OH)_2Si-O-Si(OH)_3.H_2O = => Si(OH)_4[O-](OH$
5.00×10 ¹³	0	13.6	$Si(OH)_{4}[O-](OH)_{2}Si-O-Si(OH)_{3}.H_{2}O ==> Si(OH)_{4} + [O-](OH)_{2}Si-O-Si(OH)_{3}.H_{2}O ==> Si(OH)_{4} + [O-](OH)_{2}.Si-O-Si(OH)_{3}.H_{2}O ==> Si(OH)_{4} + [O-](OH)_{4} + [O-](OH)_{4}$
1.39×10^{12}	-0.634	28.3	$Si(OH)_{4}[O-](OH)_{2}Si-O-Si(OH)_{3}.H_{2}O ==> Si[-](OH)_{4}-O-Si(OH)_{2}-O-Si(OH)_{3}$
2.57×10 ¹¹	0.805	15.7	$Si[-](OH)_4\text{-}O\text{-}Si(OH)_2\text{-}O\text{-}Si(OH)_3 = => Si(OH)_4[O-](OH)_2Si\text{-}O\text{-}Si(OH)_3.H_2O$
2.94×10^{12}	0	29.0	$Si[-](OH)_4\text{-}O\text{-}Si(OH)_2\text{-}O\text{-}Si(OH)_3 ==> [O-]Si(OH)_2\text{-}O\text{-}Si(OH)_2\text{-}O\text{-}Si(OH)_3\text{-}H_2O$
3.98×10 ¹²	0.125	83.1	$[O-]Si(OH)_2-O-Si(OH)_2-O-Si(OH)_3, H_2O ==> Si[-](OH)_4-O-Si(OH)_2-O-Si(OH)_3$
3.04×10 ¹⁰	1.640	89.8	$[O-]Si(OH)_2-O-Si(OH)_2-O-Si(OH)_3, H_2O ==> cyc \{-O-Si(OH)_2-O-Si(OH)_2-O-Si[-](OH)_3\}$
5.61×10 ¹⁰	1.088	42.6	$cyc\{-O-Si(OH)_2-O-Si(OH)_2-O-Si[-](OH)_3\} \implies [O-]Si(OH)_2-O-Si(OH)_2-O-Si(OH)_3-H_2O(OH)_3-O-Si(OH)_2-O-Si(OH)_3-H_2O(OH)_3-O-Si(OH$
1.10×10^{11}	1.035	46.7	$cyc\{-O-Si(OH)_2-O-Si(OH)_2-O-Si[-](OH)_3\} = => cyc\{-O-Si(OH)_2-O-Si(OH)_2-O-Si[O-](OH)-\}.H_2O(OH)_2-O-Si(OH)$
5.88×10 ¹²	0.285	89.7	$cyc\{-O-Si(OH)_2-O-Si(OH)_2-O-Si[O-](OH)-\}.H_2O ==> cyc\{-O-Si(OH)_2-O-Si(OH)_2-O-Si[-](OH)_3\}$
1.08×10^{13}	0	18.0	$Si[O-](OH)_3 + (OH)_3Si-O-Si(OH)_3.H_2O = => Si[O-](OH)_3(OH)_3Si-O-Si(OH)_3.H_2O = => Si[O-](OH)_3(OH)_3Si-O-Si(OH)_3Si-O-Si(OH)_3$
5.00×10 ¹³	0	5.0	$Si[O-](OH)_3(OH)_3Si-O-Si(OH)_3.H_2O ==> Si[O-](OH)_3 + (OH)_3Si-O-Si(OH)_3.H_2O ==> Si[O-](OH)_3 + (OH)_3Si-O-Si(OH)_3 + (OH)_3 + (OH)_3Si-O-Si(OH)_3 + (OH)_3 + (OH)$
3.71×10 ¹¹	0.067	16.7	$Si[O-](OH)_{3}(OH)_{3}Si-O-Si(OH)_{3}.H_{2}O ==> Si(OH)_{3}-O-Si[-](OH)_{3}-O-Si(OH)_{3}-O-$
1.46×10^{13}	-0.395	14.2	$Si(OH)_3\text{-}O\text{-}Si[\text{-}](OH)_3\text{-}O\text{-}Si(OH)_3 = \Longrightarrow Si[O\text{-}](OH)_3(OH)_3Si\text{-}O\text{-}Si(OH)_3.H_2O$
6.13×10 ¹²	-0.370	60.3	$Si(OH)_3\text{-}O\text{-}Si[\text{-}](OH)_3\text{-}O\text{-}Si(OH)_3 = => Si(OH)_3\text{-}O\text{-}Si(OH)[O\text{-}]\text{-}O\text{-}Si(OH)_3\text{-}H_2O$
5.22×10 ¹²	-0.120	80.2	$Si(OH)_3$ -O- $Si(OH)[O-]$ -O- $Si(OH)_3$. $H_2O = > Si(OH)_3$ -O- $Si[-](OH)_3$ -O- $Si(OH)_3$

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2013

# Tetramer			
1.14×10 ¹³	0	18.0	$Si(OH)_4 + [O-]Si(OH)_2 - O-Si(OH)_2 - O-Si(OH)_3 \\ H_2O = > Si(OH)_4 \\ \dots [O-]Si(OH)_2 - O-Si(OH)_2 - O-Si(OH)_3 \\ \dots \\ H_2O = Si(OH)_4 \\ \dots \\ H_2O = Si(OH)_2 \\ \dots \\ H_2O = Si(O$
5.00×10 ¹³	0	5.8	$Si(OH)_{4}[O-]Si(OH)_{2}-O-Si(OH)_{2}-O-Si(OH)_{3}.H_{2}O ==> Si(OH)_{4} + [O-]Si(OH)_{2}-O-Si(OH)_{2}-O-Si(OH)_{3}.H_{2}O ==> Si(OH)_{4} + [O-]Si(OH)_{2}-O-Si(OH)_{3}.H_{2}O ==> Si(OH)_{4} + [O-]Si(OH)_{2} + [O-]Si(OH)$
8.84×10 ¹¹	0.305	31.0	$Si(OH)_{4}[O-]Si(OH)_{2}-O-Si(OH)_{2}-O-Si(OH)_{3}.H_{2}O ==> Si[-](OH)_{4}-O-Si(OH)_{2}-O-Si(OH)_{2}-O-Si(OH)_{3}.H_{2}O ==> Si[-](OH)_{4}-O-Si(OH)_{2}-O-Si(OH)_{3}.H_{2}O ==> Si[-](OH)_{4}-O-Si(OH)_{4}-O-S$
4.36×10 ¹¹	0.338	8.7	$Si[-](OH)_4-O-Si(OH)_2-O-Si(OH)_2-O-Si(OH)_3 = => Si(OH)_4 + [O-]Si(OH)_2-O-Si(OH)_2-O-Si(OH)_3.H_2O(OH)_3 = => Si(OH)_4 + [O-]Si(OH)_2-O-Si(OH)_3.H_2O(OH)_3 = => Si(OH)_4 + [O-]Si(OH)_2-O-Si(OH)_3.H_2O(OH)_3.H_2O(OH)_3 = => Si(OH)_4 + [O-]Si(OH)_2-O-Si(OH)_3.H_2O(OH)_3.H_2$
3.31×10 ¹¹	0.700	68.5	$Si[-](OH)_4-O-Si(OH)_2-O-Si(OH)_2-O-Si(OH)_3 ==> [O-]Si(OH)_2-O-Si(OH)_2-O-Si(OH)_2-O-Si(OH)_3-H_2O-Si(OH)_3-Si(OH)$
1.55×10 ¹²	0.355	129.2	$[O-]Si(OH)_2-O-Si(OH)_2-O-Si(OH)_3-H_2O ==>Si[-](OH)_4-O-Si(OH)_2-O-Si(OH)_2-O-Si(OH)_3-O-Si(OH)_$
1.75×10^{10}	-0.051	40.7	$[O-]Si(OH)_2-O-Si(OH)_2-O-Si(OH)_2-O-Si(OH)_3.H_2O ==> cyc \{-O-Si(OH)_2-O-Si(OH)_2-O-Si[-](OH)_2 \} - O-Si(OH)_3.H_2O ==> cyc \{-O-Si(OH)_2-O-Si(OH)_2-O-Si(OH)_2 \} - O-Si(OH)_2-O-Si(OH)_2 \} - O-Si(OH)_2-O-Si(OH)_2-O-Si(OH)_2 \} - O-Si(OH)_2-O-Si($
4.35×10 ⁰⁸	2.149	51.3	$cyc\{-O-Si(OH)_2-O-Si(OH)_2-O-Si[-](OH)_2\}-O-Si(OH)_3 ==> [O-]Si(OH)_2-O-Si(OH)_2-O-Si(OH)_2-O-Si(OH)_3-H_2O(OH)_3 ==> [O-]Si(OH)_2-O-Si(OH)_2-O-Si(OH)_3 ==> [O-]Si(OH)_2-O-Si(OH)_2-O-Si(OH)_3-O-Si(OH)_3 ==> [O-]Si(OH)_2-O-Si(OH)_2-O-Si(OH)_3-O-Si(OH)_3-O-Si(OH)_3 ==> [O-]Si(OH)_2-O-Si(OH)_2-O-Si(OH)_3-O-Si($
4.34×10 ¹¹	0.581	46.5	$cyc\{-O-Si(OH)_{2}-O-Si(OH)_{2}-O-Si[-](OH)_{2}\}-O-Si(OH)_{3}==>cyc\{-O-Si(OH)_{2}-O-Si(OH)_{2}-O-Si[O-]\}-O-Si(OH)_{3}-H_{2}O-Si(OH)_{3}-H$
2.98×10 ¹³	-0.965	52.4	$cyc\{-O-Si(OH)_2-O-Si(OH)_2-O-Si[O-]\}-O-Si(OH)_3, H_2O ==> cyc\{-O-Si(OH)_2-O-Si(OH)_2-O-Si[-](OH)_2\}-O-Si(OH)_3, H_2O ==> cyc\{-O-Si(OH)_2-O-Si(OH)_2-O-Si[-](OH)_2\}-O-Si(OH)_3, H_2O ==> cyc\{-O-Si(OH)_2-O-Si(OH)_2-O-Si(OH)_2\}-O-Si(OH)_3, H_2O ==> cyc\{-O-Si(OH)_2-O-Si(OH)_2-O-Si(OH)_2\}-O-Si(OH)_3, H_2O ==> cyc\{-O-Si(OH)_2-O-Si(OH)_2-O-Si(OH)_2\}-O-Si(OH)_3, H_2O ==> cyc\{-O-Si(OH)_2-O-Si(OH)_2-O-Si(OH)_2\}-O-Si(OH)_3, H_2O ==> cyc\{-O-Si(OH)_2-O-Si(OH)_2-O-Si(OH)_2\}-O-Si(OH)_3$
3.67×10 ¹⁰	0.544	51.0	$[O-]Si(OH)_2-O-Si(OH)_2-O-Si(OH)_2-O-Si(OH)_3.H_2O ==> cyc\{-O-Si(OH)_2-O-Si(OH)_2-O-Si(OH)_2-O-Si(-](OH)_3-\}$
1.92×10^{09}	1.172	44.6	$cyc\{-O-Si(OH)_2-O-Si(OH)_2-O-Si(OH)_2-O-Si(-](OH)_3-\} ==> [O-]Si(OH)_2-O-Si(OH)_2-O-Si(OH)_2-O-Si(OH)_3-D_3-Si(OH)_3-Si(OH)_3-D_3-Si(OH)_3-D_3-Si(OH)_3-D_3-Si(OH)_3-D_3-Si(OH)_3-D_3-Si(OH)_3-D_3-Si(OH)_3-D_3-Si(OH)_3-D_3-Si(OH)_3-D_3-Si(OH)_3-D_3-Si(OH)_3-D_3-Si(OH)_3-D_3-Si(OH)_3-D_3-Si(OH)_3-D_3-Si(OH)_3-$
6.05×10 ¹⁰	0.593	48.1	H_2O
9.67×10 ¹²	-0.642	75.0	$cyc{-O-Si(OH)_2-O-Si(OH)_2-O-Si(OH)_2-O-Si(OH)[O-]-}.H_2O ==> cyc{-O-Si(OH)_2-O-Si(OH)_2-O-Si(OH)_2-O-Si[-](OH)_3-}$
1.14×10 ¹³	0	18.0	$Si[O-](OH)_3 + Si(OH)_3 - O-Si(OH)_2 - O-Si(OH)_3 \\ H_2O = Si[O-](OH)_3 \\ \\ Si(OH)_3 - O-Si(OH)_2 - O-Si(OH)_3 \\ H_2O = Si[O-](OH)_3 \\ \\ Si(OH)_3 - O-Si(OH)_2 \\ \\ Si(OH)_3 - O-Si(OH)_3 \\ \\ Si(OH)_3 \\ \\ Si(OH)_3 \\ \\ Si(OH$
5.00×10 ¹³	0	5.0	$Si[O-](OH)_{3}Si(OH)_{3}-O-Si(OH)_{2}-O-Si(OH)_{3}.H_{2}O = => Si[O-](OH)_{3} + Si(OH)_{3}-O-Si(OH)_{2}-O-Si(OH)_{3}.H_{2}O = => Si[O-](OH)_{3} + Si(OH)_{3}-O-Si(OH)_{3}.H_{2}O = => Si[O-](OH)_{3} + Si(OH)_{3}-O-Si(OH)_{3}-O-Si(OH)_{3}.H_{2}O = => Si[O-](OH)_{3} + Si(OH)_{3}-O-Si(OH)_{3}-$
9.22×10 ⁰⁹	0.442	35.1	$Si[O-](OH)_{3}Si(OH)_{3}-O-Si(OH)_{2}-O-Si(OH)_{3}.H_{2}O = => Si(OH)_{3}-O-Si[-](OH)_{3}-O-Si(OH)_{2}-O-Si(OH)_{3}-O$
2.75×10^{06}	3.613	40.3	$Si(OH)_{3}\text{-}O\text{-}Si[-](OH)_{3}\text{-}O\text{-}Si(OH)_{2}\text{-}O\text{-}Si(OH)_{3} = => Si[O\text{-}](OH)_{3}\text{-}Si(OH)_{3}\text{-}O\text{-}Si(OH)_{2}\text{-}O\text{-}Si(OH)_{3}\text{-}H_{2}O(OH)_{3}\text{-}O\text{-}Si(OH)_{3}\text{-}O\text{-}O\text{-}Si(OH)_{3}\text{-}O\text{-}O\text{-}O\text{-}Si(OH)_{3}\text{-}O\text{-}O\text{-}O\text{-}O\text{-}O\text{-}O\text{-}O\text{-}$
5.22×10 ⁰⁸	1.775	41.7	$Si(OH)_3-O-Si[-](OH)_3-O-Si(OH)_2-O-Si(OH)_3 = => Si(OH)_3-O-Si(OH)[O-]-O-Si(OH)_2-O-Si(OH)_3.H_2O(OH)_3 = => Si(OH)_3-O-Si(OH)_3-$
1.00×10^{11}	0	84.4	$Si(OH)_3-O-Si(OH)[O-]-O-Si(OH)_2-O-Si(OH)_3.H_2O \Longrightarrow Si(OH)_3-O-Si[-](OH)_3-O-Si(OH)_2-O-Si(OH)_3-O$
1.77×10^{11}	1.164	41.9	$Si(OH)_{3}-O-Si(OH)[O-]-O-Si(OH)_{2}-O-Si(OH)_{3}.H_{2}O ==> cyc\{-O-Si(OH)_{2}-O-Si[-](OH)_{3}-O-Si(OH)\} + O-Si(OH)_{3}-$
6.11×10 ¹¹	1.188	22.3	$cyc{-O-Si(OH)_2-O-Si[-](OH)_3-O-Si(OH)} -O-Si(OH)_3 ==> Si(OH)_3-O-Si(OH)_[O-]-O-Si(OH)_2-O-Si(OH)_3,H_2O ==> cyc{-O-Si(OH)_2-O-Si(OH)_2-O-Si(OH)_3-O-Si(OH)_3-O-Si(OH)_3} ==> cyc{-O-Si(OH)_2-O-Si(OH)_2-O-Si(OH)_3-O-Si($
4.30×10 ¹¹	0.562	61.6	$Si(OH)_3.H_2O$ $cyc\{-O-Si(OH)_2-O-Si(OH),O-Si(OH),H_2O ==> cyc\{-O-Si(OH)_2-O-Si(OH)_3-O-Si(OH),O-Si($
4.21×10 ¹¹	0.292	103.7	Si(OH) ₃
1.14×10^{13}	0	18.0	Si(OH) + Si(OH) - O Si(OH) O - Si(OH) + O - Si(OH) - Si(OH) - O Si(OH) O + O Si(OH) + O - Si(OH) - - S
5.00×10^{13}	0	40.4	$Si(OH)_{4} + Si(OH)_{2}O-Si(OH)_{0}-J-O-Si(OH)_{3}H_{2}O ==> Si(OH)_{4}Si(OH)_{3}-O-Si(OH)_{0}-J-O-Si(OH)_{3}H_{2}O$
2.20×10^{10}	1 332	38.3	$S_{1}(OH)_{4}$, $S_{1}(OH)_{3}$, $OS_{1}(OH)_{1}OS_{2}(OH)_{3}$, $H_{2}O = -> S_{1}(OH)_{4} + S_{1}(OH)_{3}$, $OS_{2}(OH)_{1}OS_{2}(OH)_{3}$, $H_{2}O$
1.57×10^{11}	1.083	35.5	$S_{1}(OH) = S_{1}(OH) = O_{1}(OH) = O_{1}(OH) = S_{1}(OH) = S_{1}(OH) = O_{1}(OH) = O_{1$
1.57×10^{13}	0.820	50.2	$S_{1}(OH)_{3} - O-S_{1}(OH)_{1} - O-S_{1}(OH)_{3} - O-S_{1}(-1)_{0}(OH)_{4} = -> S_{1}(OH)_{4}> S_{1}(OH)_{3} - O-S_{1}(OH)_{1}(O-1)_{2} - O-S_{1}(OH)_{3} - O-S_{1}(OH)_{3} - O-S_{1}(OH)_{4}> S_{1}(OH)_{4}> S$
1.55×10^{12}	-0.629	01.7	$S_{1}(OH)_{3}-O-S_{1}(OH)_{1}-O-S_{1}(OH)_{3}-O-S_{1}(-)_{1}(OH)_{4}=->S_{1}(OH)_{3}-O-S_{1}(OH)_{4}-O-S_{1}(OH)_{3}-O-S_{1}(OH)_{2}(O+)_{1}-D_{2}(O+)_{2}(O+)_{2}O-S_{1}(OH)_{2}(O+)_{2}O-S_{1}(OH)_{2}(O+)_{2}O-S_{1}(OH)_{2}(O+)_{2}O-S_{1}(OH)_{$
8.93×10 ¹⁰	0.242	51.0	$S_{1}(OH) = S_{2}(OH) = S_{2$
5.74×10^{10}	0.242	20.0	$S_{1}(OH)_{3} = O_{3}(OH)_{1} = O_{3}(OH)_{3} = O_{3}(OH)_{2}(O_{3}(OH)_{2} = -> S_{2}(OH)_{2} = O_{3}(OH)_{2} = O_{3}(OH)_{3} = O_{3}(OH)_{$
5.74410	0.070	29.0	$c_{c_{1}} = c_{1} + c_{1} + c_{1} + c_{2} + c_{3} + $
1.14×10 ¹³	0	18.0	$Si[O-](OH)_3 + Si(OH)_3 - O-Si(OH)_2 - O-Si(OH)_3 + H_2O = Si[O-](OH)_3 + Si(OH)_3 - O-Si(OH)_2 - O-Si(OH)_3 + H_2O = Si[O-](OH)_3 + Si(OH)_3 - O-Si(OH)_3 + Si(OH)_3 + Si(OH)_3$
5.00×10 ¹³	0	5.0	$Si[O-](OH)_{3}\{Si(OH)_{3}-O-\}Si(OH)_{2}-O-Si(OH)_{3}.H_{2}O \implies Si[O-](OH)_{3} + Si(OH)_{3}-O-Si(OH)_{2}-O-Si(OH)_{3}.H_{2}O \implies Si[O-](OH)_{3} + Si(OH)_{3}-O-Si(OH)_{3}.H_{2}O \implies Si[O-](OH)_{3} + Si(OH)_{3}-O-Si(OH)_{3} + Si(OH)_{3}-O-Si(OH)_{3}-O-Si(OH)_{3} + Si(OH)_{3}-O-S$
1.44×10 ¹¹	0.382	32.4	$Si[O-](OH)_{3}{Si(OH)_{3}-O-Si(OH)_{2}-O-Si(OH)_{3}.H_{2}O \implies Si(OH)_{3}-O-Si[-](OH)_{2}{-O-Si(OH)_{3}}-O-Si(OH)_{3}-O$
9.65×10 ⁰⁹	1.685	25.0	$Si(OH)_{3}-O-Si[-](OH)_{2}\{-O-Si(OH)_{3}\}-O-Si(OH)_{3} ==> Si[O-](OH)_{3}\{Si(OH)_{3}-O-\}Si(OH)_{2}-O-Si(OH)_{3}.H_{2}O(OH)_{3}-O-Si(OH)_{3}.H_{2}O(OH)_{3}-O-Si(OH)_{3}.H_{2}O(OH)_{3}-O-Si(OH)_{3}.H_{2}O(OH)_{3}-O-Si(OH)_{3}.H_{2}O(OH)_{3}-O-Si(OH)_{3}.H_{2}O(OH)_{3}-O-Si(OH)_{3}.H_{2}O(OH)_{3}-O-Si(OH)_{3}.H_{2}O(O$
3.14×10 ¹¹	0.781	23.2	$Si(OH)_{3}-O-Si[-](OH)_{2}\{-O-Si(OH)_{3}\}-O-Si(OH)_{3}==>Si(OH)_{3}-O-Si(OH)\{-O-Si(OH)_{3}\}-O-Si(OH)_{2}[O-].H_{2}O(OH)_{3}==>Si(OH)_{3}-O-Si(OH)_{3}\}-O-Si(OH)_{3}==>Si(OH)_{3}-O-Si(OH)_{3}+O-Si(OH)_{3}==>Si(OH)_{3}-O-Si(OH)_{3}+O-Si(OH)_{3}==>Si(OH)_{3}-O-Si(OH)_{3}+O-Si(OH)_{3}==>Si(OH)_{3}-O-Si(OH)_{3}+O-Si(OH)_{3}==>Si(OH)_{3}-O-Si(OH)_{3}+O-Si(OH)_{3}==>Si(OH)_{3}-O-Si(OH)_{3}+O-Si(OH)_{3}==>Si(OH)_{3}-O-Si(OH)_{3}==>Si(OH)_{3}-O-Si(OH)_{3}==>Si(OH)_{3}-O-Si(OH)_{3}==>Si(OH)_{3}-O-Si(OH)_{3}==>Si(OH)_{3}-O-Si(OH)_{3}==>Si(OH)_{3}-O-Si(OH)_{3}==>Si(OH)_{3}-O-Si(OH)_{3}==>Si(OH)_{3}-O-Si(OH)_{3}==>Si(OH)_{3}-O-Si(OH)_{3}==>Si(OH)_{3}-O-Si(OH)_{3}==>Si(OH)_{3}-O-Si(OH)_{3}==>Si(OH)_{3}-O-Si(OH)_{3}==>Si(OH)_{3}=O-Si(OH)$
5.78×10 ¹²	-0.723	61.8	$Si(OH)_{3}-O-Si(OH)_{\{}-O-Si(OH)_{3}\}-O-Si(OH)_{2}[O-].H_{2}O ==>Si(OH)_{3}-O-Si[-](OH)_{2}\{-O-Si(OH)_{3}\}-O-Si(OH)_{3}\}-O-Si(OH)_{3}+O-Si(OH)_{3}+O-Si(OH)_{3}\}-O-Si(OH)_{3}+O-Si(OH)_{3$
1.11×10 ¹³	0	18.0	$Si(OH)_4 + cyc\{-O-Si(OH)_2-O-Si(OH)_2-O-Si[O-](OH)-\}.H_2O ==> Si(OH)_4cyc\{-O-Si(OH)_2-O-Si(OH)_2-O-Si[O-](OH)-\}.H_2O$
5 00×10 ¹³	0	5.0	$Si(OH)_{4}cyc{-O-Si(OH)_{2}-O-Si(OH)_{2}-O-Si[O-](OH)-}.H_{2}O ==>Si(OH)_{4} + cyc{-O-Si(OH)_{2}-O-Si(OH)_{2}-O-Si[O-](OH)_{2}-O-Si[O-](OH)_{2}-O-Si(OH)_{2}-O-Si[O-](OH)_{2}-O-Si(OH)$
2.00.10	0	5.0	1// 17-

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2013

1.21×10^{12}	-0.667	7.3	$Si(OH)_{4}cyc \{-O-Si(OH)_{2}-O-Si(OH)_{2}-O-Si[O-](OH)-\}, \\ H_{2}O ==> cyc \{-O-Si(OH)_{2}-O-Si(OH)_{2}-O-SiOH\} + O-Si[-](OH)_{4}-O-Si(OH)_{2}-O-SiOH\} + O-Si[-](OH)_{4}-O-SiOH\} + O-SiOH\} + O-SiOH$
5.12×10 ¹¹	0.311	5.0	$cyc\{-O-Si(OH)_{2}-O-Si(OH)_{2}-O-Si(OH)_{2}-O-Si(OH)_{4}==>Si(OH)_{4}cyc\{-O-Si(OH)_{2}-O-Si(OH)_{2}.O-Si[O-](OH)_{-}\}.H_{2}O(OH)_{2}-O-Si(OH)_{$
2.59×10 ¹⁰	2.213	48.3	$cyc\{-O-Si(OH)_{2}-O-Si(OH)_{2$
3.27×10 ¹¹	1.059	72.9	$cyc\{-O-Si(OH)_2-O-Si(OH)_2-O-SiOH\}-O-Si(OH)_2[O-].H_2O \Longrightarrow cyc\{-O-Si(OH)_2-O-Si(OH)_2-O-SiOH\}-O-Si[-](OH)_4-O-Si(OH)_2-O-SiOH\}-O-SiOH]-O-Si(OH)_2-O-SiOH]-O-Si(OH)_2-O-SiOH]-$
			$Si[O-](OH)_3 + cyc\{-O-Si(OH)_2-O-Si(OH)_2-O-Si(OH)_2-\}, H_2O = => Si[O-](OH)_3cyc\{-O-Si(OH)_2-$
1.11×10 ¹³	0	18.0	$Si(OH)_{2-} H_{2O}$ Si[O-](OH)_{3cyc} -O-Si(OH)_{2-}O-Si(OH)_{2-}O-Si(OH)_{2-} H_{2O} ==> Si[O-](OH)_{3} + cyc \{-O-Si(OH)_{2-}O-Si
5.00×10 ¹³	0	35.7	$Si(OH)_2-\}.H_2O$ Si[O-](OH)cvc{-O-Si(OH)_2-O-Si(OH)_2-O-Si(OH)_2-}.H_2O ==> cvc{-O-Si(OH)_2-O-Si(OH)_2-}.Si[-](OH)_2-}.O-Si[-](OH)_2-O-Si
2.84×10 ¹⁰	-0.243	15.5	Si(OH) ₃ $C_{VC}^{VC} = C_{VC}^{VC} = C_{$
1.23×10 ¹⁰	1.270	13.2	H_2O
1.01×10 ¹¹	0	55.3	$(OH)_3Si-O-Si(OH)_3.H_2O + [O-](OH)_2Si-O-Si(OH)_3.H_2O ==> Si(OH)_3-O-Si[-](OH)_3-O-Si(OH)_2-O-Si(OH)_3$
6.48×10 ⁰⁸	2.659	32.2	$Si(OH)_{3}\text{-}O\text{-}Si[-](OH)_{3}\text{-}O\text{-}Si(OH)_{2}\text{-}O\text{-}Si(OH)_{3} = =>(OH)_{3}Si\text{-}O\text{-}Si(OH)_{3}\text{.}H_{2}O + [O\text{-}](OH)_{2}Si\text{-}O\text{-}Si(OH)_{3}\text{.}H_{2}O + [O\text{-}](OH)_{2}Si\text{-}O\text{-}Si(OH)_{2}O + [O\text{-}](OH)_{2}O + [O\text{-}$
#CONDENS	SD STRUCTU	JRES	
2.87×10 ¹¹	0.653	47.0	$cyc\{-O-Si(OH)_2-O-Si(OH)[O-]-O-Si(OH)\}-O-Si(OH)_3,H_2O ==> bicyc\{term(OH)_4\}$
3.58×10 ¹¹	0.663	12.0	$bicyc\{term(OH)_4\} ==> cyc\{-O-Si(OH)_2-O-Si(OH)[O-]-O-Si(OH)\}-O-Si(OH)_3.H_2O$
2.48×10 ¹¹	0.859	83.8	bicyc{term(OH) ₄ } ==> bicyc{term(OH) ₂ [O]-}.H ₂ O
1.96×10 ¹³	-0.157	87.0	$bicyc{term(OH)_2[O]-}.H_2O \Longrightarrow bicyc{term(OH)_4}$
3.17×10 ¹⁰	0.286	23.4	$cyc\{-O-Si(OH)_2-O-Si(OH)_2-O-Si(OH)_2-O-Si(OH)[O-]-\}.H_2O \Longrightarrow bicyc\{bridge(OH)_2\}$
1.75×10 ¹¹	0.522	20.8	$bicyc{bridge(OH)_2} ==> cyc{-O-Si(OH)_2-O-$
1.01×10 ¹³	-0.201	74.2	bicyc{bridge(OH) ₂ } ==> bicyc{bridge(OH)[O]-}.H ₂ O
4.33×10 ¹²	-0.305	73.5	$bicyc{bridge(OH)[O]-}.H_2O \Longrightarrow bicyc{bridge(OH)_2}$
1.63×10 ¹²	-1.374	1.3	$cvc{-O-Si(OH)_2-O-Si(OH)_2-O-Si(OH)_3[O-]_H_2O ==> bicvc{bridge(OH)_2}$
9.24×10 ¹⁰	0.385	18.9	$bicyc{bridge(OH)_2} ==> cyc{-O-Si(OH)_2-O-Si(OH)_2-O-Si(OH)_3[O-].H_2O}$
2.02×10 ¹³	-0.841	42.0	bicyc{term(OH)2[O]-}.H ₂ O ==> tetcluster{(OH) ₂ }
5.70×10 ¹¹	0.212	4.5	$tetcluster\{(OH)_2\} ==> bicyc\{term(OH)_2[O]-\}.H_2O$
1.34×10 ¹⁵	-1.246	86.4	$tetcluster{(OH)_2} ==> tetcluster{(O-)}$
7.25×10 ¹²	-0.374	106.6	$tetcluster{(O-)} ==> tetcluster{(OH)_2}$
# pH reaction	ns		
1.18×10^{08}	0	56.1	$H_2O ==> H + OH$
1.32×10 ¹⁴	0	0.3	$H + OH ==> H_2O$
1.27×10 ⁹⁰	-27.613	98.3	$Si(OH)_4 ==> Si[O-](OH)_3 + H$
1.70×10^{14}	0	03	$Si[O_1(OH)_2 + H ==> Si(OH)_2$
11/0/10	Ŭ	0.5	$D[O](O(1)_{2} + H \longrightarrow D(O(1)_{4})$
3.00×10 ¹⁴	0	0.3	$[O-](OH)_2Si-O-Si(OH)_3.H_2O + H \Longrightarrow (OH)_3Si-O-Si(OH)_3.H_2O$
1.90×10 ⁹⁰	-27.613	94.3	$(OH)_3Si-O-Si(OH)_3.H_2O \implies [O-](OH)_2Si-O-Si(OH)_3.H_2O + H$
# Trimer			
3.00×10 ¹⁴	0	0.3	$[O-]Si(OH)_2-O-Si(OH)_2-O-Si(OH)_3.H_2O + H = > Si(OH)_3-O-Si(OH)_2-O-Si(OH)_3.H_2O$
1.90×10 ⁹⁰	-27.613	0.0	$Si(OH)_3-O-Si(OH)_2-O-Si(OH)_3.H_2O ==> [O-]Si(OH)_2-O-Si(OH)_3-H_2O + H$
3.00×10 ¹⁴	0	0.3	$cyc\{-O-Si(OH)_2-O-Si(OH)_2-O-Si[O-](OH)-\}.H_2O+H==>cyc\{-O-Si(OH)_2-O-Si(OH)_2-O-Si(OH)_2-\}.H_2O=0.00000000000000000000000000000000000$

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2013

1.90×10 ⁹⁰	-27.613	0.0	$cyc\{-O-Si(OH)_{2}-O-Si(OH)_{2}-O-Si(OH)_{2}-\}.H_{2}O = => cyc\{-O-Si(OH)_{2}-O-Si(OH)_{2}-O-Si[O-](OH)-\}.H_{2}O + H_{2}O-Si(OH)_{2}-O-$
3.00×10 ¹⁴	0	0.3	$Si(OH)_{3}\text{-}O\text{-}Si(OH)[O\text{-}]\text{-}O\text{-}Si(OH)_{3}\text{-}H_{2}O + H = => Si(OH)_{3}\text{-}O\text{-}Si(OH)_{2}\text{-}O\text{-}Si(OH)_{3}\text{-}H_{2}O + H = => Si(OH)_{3}\text{-}O\text{-}Si(OH)_{3}\text{-}H_{2}O + H = => Si(OH)_{3}\text{-}O\text{-}Si(OH)_{3}$
1.90×10 ⁹⁰	-27.613	0.0	$Si(OH)_3\text{-}O\text{-}Si(OH)_2\text{-}O\text{-}Si(OH)_3\text{-}H_2O = => Si(OH)_3\text{-}O\text{-}Si(OH)[O\text{-}]\text{-}O\text{-}Si(OH)_3\text{-}H_2O + H_2O $
# Tetramer			
3.00×10 ¹⁴	0	0.3	$[O-]Si(OH)_2-O-Si(OH)_2-O-Si(OH)_2-O-Si(OH)_3.H_2O + H ==>Si(OH)_3-O-Si(OH)_2-O-Si(OH)_2-O-Si(OH)_3-O-Si(OH)$
1.90×10 ⁹⁰	-27.613	0.0	$Si(OH)_3-O-Si(OH)_2-O-Si(OH)_2-O-Si(OH)_3 ==> [O-]Si(OH)_2-O-Si(OH)_2-O-Si(OH)_2-O-Si(OH)_3.H_2O + H \\ cyc \{-O-Si(OH)_2$
3.00×10 ¹⁴	0	0.3	$Si(OH)_{2}-\}$ $cyc\{-O-Si(OH)_{2}-O-Si(OH)_{2}-O-Si(OH)_{2}-O-Si(OH)_{2}-\} ==> cyc\{-O-Si(OH)_{2}-O-Si(OH)_{2$
1.90×10^{90}	-27.613	0.0	$H_2O + H$
3.00×10 ¹⁴	0	0.3	$cyc\{-O-Si(OH)_{2}-O-Si(OH)_{2}-O-Si(OH)_{3}-D-Si(OH)_{3}-H_{2}O+H==>cyc\{-O-Si(OH)_{2}-O-Si(OH)_{2}-O-Si(OH)_{3}-O-Si(OH)_{3}-D-Si(OH)$
1.90×10^{90}	-27.613	0.0	$cyc\{-O-Si(OH)_2-O-Si(OH)_2-O-Si(OH)\} + O-Si(OH)_3 = = > cyc\{-O-Si(OH)_2-O-Si(OH)_2-O-Si(OH)_3-D-Si(OH)_3, H_2O+H_2O-Si(OH)_2-O-Si(OH)_3, H_2O+H_2O-Si(OH)_3, H_2O-Si(OH)_3, H_2O+H_2O-Si(OH)_3, H_2O-Si(OH)_3, H_2O-Si$
3.00×10 ¹⁴	0	0.3	$Si(OH)_3-O-Si(OH)[O-]-O-Si(OH)_2-O-Si(OH)_3.H2O+H = > Si(OH)_3-O-Si(OH)_2-O-Si(OH)_2-O-Si(OH)_3-O$
1.90×10 ⁹⁰	-27.613	0.0	$\label{eq:si(OH)_3-O-Si(OH)_2-O-Si(OH)_2-O-Si(OH)_3 ==> Si(OH)_3-O-Si(OH)[O-]-O-Si(OH)_2-O-Si(OH)_3.H_2O + H \\ cyc\{-O-Si(OH)_2-O-Si(OH)[O-]-O-Si(OH) \ \}-O-Si(OH)_3.H_2O + H ==> cyc\{-O-Si(OH)_2-O-Si(OH)_2-O-Si(OH) \ \}-O-Si(OH)_2-O-Si(OH)_2-O-Si(OH)_2-O-Si(OH)_3.H_2O + H \\ ==> cyc\{-O-Si(OH)_2-O-Si(OH)_2-O-Si(OH) \ \}-O-Si(OH)_3.H_2O + H \\ ==> cyc\{-O-Si(OH)_2-O-S$
3.00×10 ¹⁴	0	0.3	$Si(OH)_{3}$ $cvc\{-O-Si(OH)_{2}-O-Si(OH)_{2}-O-Si(OH)_{3}-O-Si(OH)_{2}=> cvc\{-O-Si(OH)_{2}-O-Si(OH)_{2}-O-Si(OH)_{3}-O-Si$
1.90×10^{90}	-27.613	0.0	+H
3.00×10 ¹⁴	0	0.3	$Si(OH)_3-O-Si(OH)\{-O-Si(OH)_3\}-O-Si(OH)_2[O-].H_2O+H==>Si(OH)_3-O-Si(OH)\{-O-Si(OH)_3\}-O-Si(OH)_3+$
1.90×10 ⁹⁰	-27.613	0.0	$\label{eq:siOH} Si(OH)_3-O-Si(OH)_3-O-Si(OH)_3=>Si(OH)_3-O-Si(OH)_3-O-Si(OH)_3-O-Si(OH)_2[O-].H_2O+H\\ cyc\{-O-Si(OH)_2-O-Si(OH)_2-O-Si(OH)_2-O-Si(OH)_2[O-].H_2O+H=>cyc\{-O-Si(OH)_2-O-Si(OH)_2-O-Si(OH)_2-O-Si(OH)_3-O-Si(O$
3.00×10^{14}	0	0.3	$Si(OH)_{3}$ $Si(OH)_{2} \cap Si(OH)_{2} \cap Si(OH)_{2} \cap Si(OH)_{3} = \sum CVC \left\{ \cap Si(OH)_{2} \cap Si(OH)_{2} \cap Si(OH)_{3} \cap Si(OH$
1.90×10^{90}	-27.613	0.0	+ H
#CONDENS	SD STRUCTU	JRES	
3.00×10 ¹⁴	0	0.3	$bicyc{term(OH)_2[O]-}.H_2O + H ==> bicyc$
1.90×10^{90}	-27.613	0.0	$bicyc == bicyc \{term(OH)_2[O]-\}.H_2O + H$
3.00×10 ¹⁴	0	0.3	bicyc{bridge(OH) ₂ [O]-}.H ₂ O + H ==> bicyc
1.90×10^{90}	-27.613	0.0	$bicyc == bicyc {bridge(OH)_2[O]-}.H_2O + H$
3.00×10 ¹⁴	0	0.3	$tetcluster{(O-)} + H ==> tetcluster$
1.90×10^{90}	-27.613	0.0	$tetcluster ==> tetcluster{(O-)} + H$
# Intermolec	ular encounte	er pair pH	reactions
1.04×10 ¹³	0	11.5	$Si(OH)_{4}[O-](OH)_{2}Si-O-Si(OH)_{3}.H_{2}O ==> Si[O-](OH)_{3}(OH)_{3}Si-O-Si(OH)_{3}.H2O$
1.00×10^{14}	0	0.3	$Si[O-](OH)_{3}(OH)_{3}Si-O-Si(OH)_{3}.H_{2}O ==> Si(OH)_{4}[O-](OH)_{2}Si-O-Si(OH)_{3}.H_{2}O ==> Si(OH)_{4}[O-](OH)_{2}.Si-O-Si(OH)_{3}.H_{2}O ==> Si(OH)_{4}[O-](OH)_{4}$
1.85×10 ¹⁵	0	4.6	$Si(OH)_{4}[O-]Si(OH)_{2}-O-Si(OH)_{2}-O-Si(OH)_{3}.H_{2}O ==> Si[O-](OH)_{3}Si(OH)_{3}-O-Si(OH)_{2}-O-Si(OH)_{3}.H_{2}O ==> Si[O-](OH)_{3}Si(OH)_{3}-O-Si(OH)_{2}-O-Si(OH)_{3}.H_{2}O ==> Si[O-](OH)_{3}Si(OH)_{3}-O-Si(OH)_{2}-O-Si(OH)_{3}.H_{2}O ==> Si[O-](OH)_{3}Si(OH)_{3}-O-Si(OH)_{2}-O-Si(OH)_{3}.H_{2}O ==> Si[O-](OH)_{3}Si(OH)_{3}-O-Si(OH)_{2}-O-Si(OH)_{3}.H_{2}O ==> Si[O-](OH)_{3}Si(OH)_{3}-O-Si(OH)_{3}.H_{2}O ==> Si[O-](OH)_{3}Si(OH)_{3}Si(OH)_{3}-O-Si(OH)_{3}$
1.00×10^{14}	0	0.3	$Si[O-](OH)_{3}Si(OH)_{3}-O-Si(OH)_{2}-O-Si(OH)_{3}.H_{2}O ==> Si(OH)_{4}[O-]Si(OH)_{2}-O-Si(OH)_{2}-O-Si(OH)_{3}.H_{2}O ==> Si(OH)_{4}[O-]Si(OH)_{2}-O-Si(OH)_{3}.H_{2}O ==> Si(OH)_{4}[O-]Si(OH)_{2}[O-]Si(OH)_{2}[O-]Si(OH)_{2}[O-]Si(OH)_{3}.H_{2}O ==> Si(OH)_{4}[O-]Si(OH)_{2}[O-]Si(OH)_{2}[O-]Si(OH)_{2}[O-]Si(OH)_{2}[O-]Si(OH)_{3$
9.41×10 ¹²	0	0.4	$Si(OH)_4Si(OH)_3-O-Si(OH)[O-]-O-Si(OH)_3.H_2O ==> Si[O-](OH)_3\{Si(OH)_3-O-\}Si(OH)_2-O-Si(OH)_3.H_2O ==> Si[O-](OH)_3Si(OH)_3-O-Si(OH)_3.H_2O ==> Si[O-](OH)_3Si(OH)_3-O-Si(OH)_3-O-Si(OH)_3.H_2O ==> Si[O-](OH)_3Si(OH)_3-O-Si(OH$
1.00×10^{14}	0	0.3	$Si[O-](OH)_{3}\{Si(OH)_{3}-O-\}Si(OH)_{2}-O-Si(OH)_{3}.H_{2}O \implies Si(OH)_{4}Si(OH)_{3}-O-Si(OH)[O-]-O-Si(OH)_{3}.H_{2}O \implies Si(OH)_{4}Si(OH)_{4}Si(OH)_{3}-O-Si(OH)_{4}Si(OH)_{4$
1.00×10 ¹⁴	0	0.3	$Si(OH)_{4}cyc\{-O-Si(OH)_{2}-O-Si(OH)_{2}-O-Si[O-](OH)_{-}\}.H_{2}O \Longrightarrow Si[O-](OH)_{3}cyc\{-O-Si(OH)_{2}-O$
9.59×10 ¹³	0	29.3	$S_1(O_1)_3C_yC_{-O-S1(O_1)_2-O-S1(O_1)_2-O-S1(O_1)_2-}.n_2O ==> S1(O_1)_4C_yC_{-O-S1(O_1)_2-O-$