Supporting Information

The influence of transition metal oxides on the kinetics of Li₂O₂ oxidation for Li-O₂ batteries

Koffi P.C. Yao, ^a Yi-Chun Lu, ^b Chibueze V. Amanchukwu, ^c David G. Kwabi, ^a Marcel Risch, ^a Jigang Zhou, ^d Alexis Grimaud, ^a Paula T. Hammond, ^c Fanny Bardé, ^e and Yang Shao-Horn, *^{a,b}

Present addresses:

Author Yi-Chun Lu: Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, P. R. China.

^a Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. Email:shaohorn@mit.edu

^b Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA

^c Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA

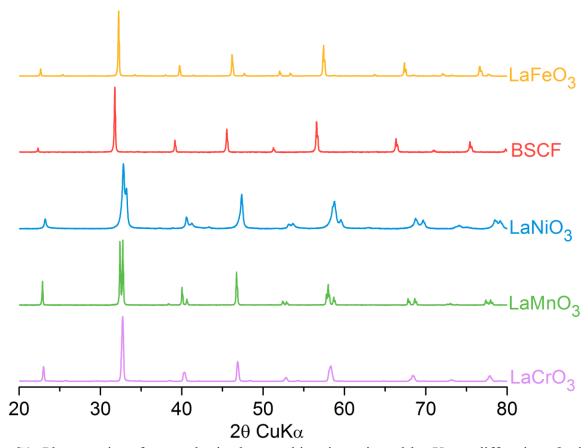
d Canadian Light Source Inc., University of Saskatchewan, Saskatoon, SK S7N 0X4, CANADA

^e Toyota Motor Europe, Research & Development 3, Advanced Technology 1, Hoge Wei 33 B, B-1930 Zaventem, Belgium

Details of perovskites synthesis

Two methods were used to obtain the perovskites investigated in the present thesis: coprecipitation and nitrates combustion. All methods have been reported previously, therefore, are described briefly below. Reference to the original work is provided.

Co-precipitation¹ was used for the synthesis of LaCrO₃, LaNiO₃ and LaMnO_{3+ δ}. Nitrates of lanthanum and the transition metal (99.98%, Alfa Aesar) were mixed in de-ionized water (Milli-Q water, 18 M Ω ·cm) at metal molar ratio of 1:1 and total concentration of 0.2 M. The solution was subsequently titrated using an aqueous 1.2 M solution of tetramethylammonium hydroxide (100%, Alfa Aesar) resulting in precipitation. The precipitate was then filtered and collected to dry. Finally, the precipitate powder is heat treated in a tube oven at ~1000 °C under dry air for approximately 10 hours.


Nitrate combustion² was used for the synthesis of $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_3$ and $LaFeO_3$. Nitrates of the rare earth and transition metal cations (Sigma Aldrich, > 99.99%) were mixed in a 2000 mL beaker at the required molar ratios of cations and total metal concentration of 0.2 M. Approximately, 0.1 M glycine was added to the mixture and homogenized using a magnetic stir plate. The mixture was heated until full evaporation of the water, followed by combustion of the solid deposit within the beaker on the heating plate. The powder was collected and heat treated under dry air at ~1000 °C for 24 hours in a tube furnace.

Purity of the synthesized perovskites was investigated using a PANanalytical X'Pert ProTM X-ray diffractometer with copper K_{α} wavelength ($\lambda = 1.5418$ nm). All obtained materials were confirmed to be optimally pure (Fig. S1). Some minor impurities estimated below 1% of the total perovskite phase were observed for LaCrO₃ and LaMnO₃ and are not expected to influence the subsequent electrochemical studies.

Ball-milling of perovskites: All powders were ball-milled using planetary ball mill (Pulverisette 6, Fritsch Inc.) at 500 rpm for 15 hours reversing every 30 minutes. Milling reversal was preceded by a 15 minutes cooling pause. A zirconium oxide milling crucible and one-millimeter diameter zirconia milling balls were employed.

Nomenclature notes:

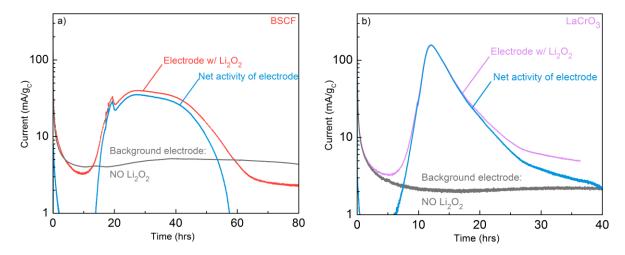
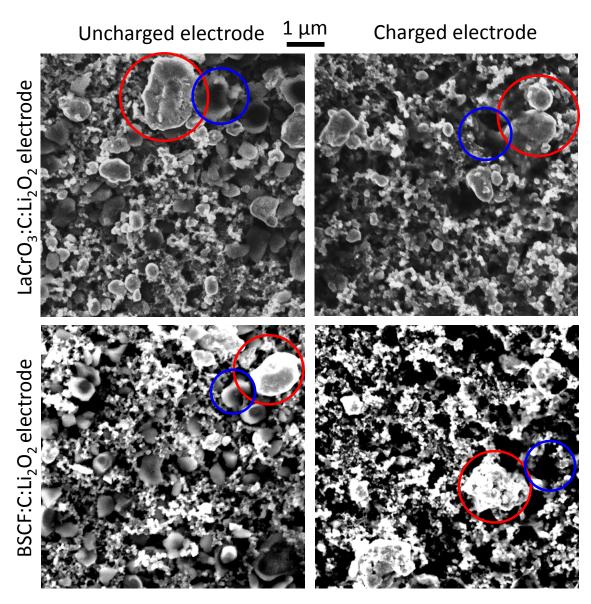

In the subsequent figure captions, Nafion[®] is used to refer to lithium exchanged Nafion[®] (Ion Power USA, LITHionTM, 7.2 wt%). All specified component ratios in composite electrodes are mass ratios.

Fig. S1: Phase purity of as-synthesized perovskites investigated by X-ray diffraction. Optimal purity of each perovskite is observed. Minor impurity phases estimated to less than 1% (peaks not very visible) were detected for LaCrO₃ and LaMnO₃.


Background subtraction:

Background current (normalized to carbon mass) is subtracted from cell currents (normalized to carbon mass) in the time domain to arrive at "net currents" (see Fig. S2). Capacity is calculated by integrating the "net current" in time. Area specific current are also calculated from "net current".

Fig. S2: Example of background subtraction performed on (a) BSCF:VC:Li₂O₂:Nafion[®] = 3:1:1:1 and (b) LaCrO₃:VC:Li₂O₂:Nafion[®] = 3:1:1:1 electrodes at 4.0 V_{Li}. Little change is observed in the final current (Net activity of electrode), which highlights the negligible magnitude of parasitic currents compared to actual Li₂O₂ oxidation currents. Negligible and featureless current curves of the electrode with no Li₂O₂ compared to electrode with Li₂O₂ proves that the observed performance of peroxide packed electrodes is due to effective oxidation of Li₂O₂.

SEM images of pristine and charged perovskite-catalyzed, Li₂O₂-preloaded electrodes

Fig. S3: SEMs of LaCrO₃:VC:Li₂O₂:Nafion[®] = 3:1:1:1 and BSCF:VC:Li₂O₂:Nafion[®] = 3:1:1:1 electrodes. (left): Pristine electrodes displaying Li₂O₂ and perovskite particles surrounded by carbon. (right): Charged electrodes contains no visible Li₂O₂ particles after 100% charging. Red circle: Perovskite particles location; Blue circle: Li₂O₂ particles location.

Charging curves of BSCF-catalyzed electrodes at 3.9, 4.0, and 4.1 V_{Li}

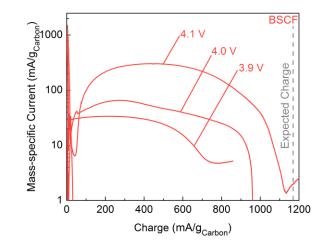
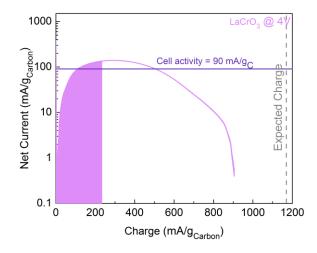
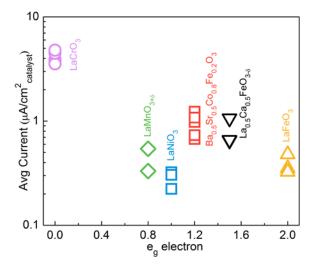
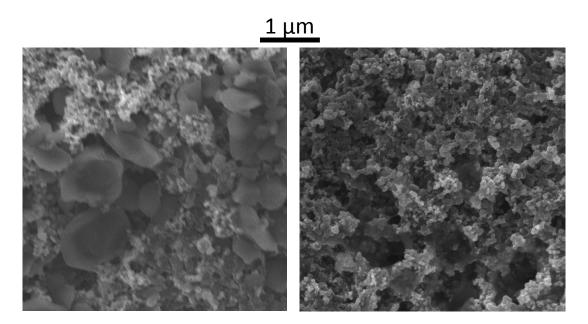


Fig. S4: Net currents normalized to carbon mass from potentiostatic charging of BSCF:VC:Li₂O₂:Nafion $^{\circledR}$ = 3:1:1:1 at 4.0 V_{Li}.

Determination of cell average current

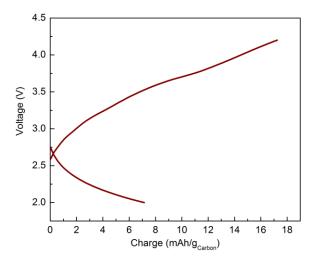
The cell's average current is calculated by integrating the "net current" in the range of 0 to 20% charge (Fig. S5) and dividing by the range of charge (mathematical average of the "net current" in the 0-20% charge range). This average is then normalized on mass or surface area bases. When reporting the average for a specific catalyst, the average current calculated per the above described method is further averaged over at least three charged cells.

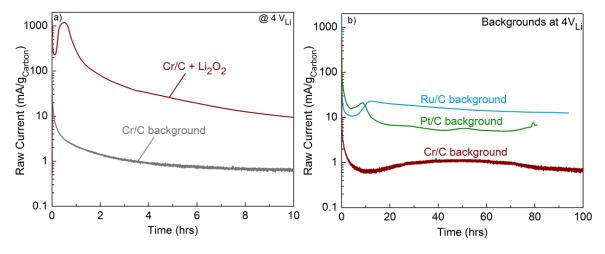




Fig. S5: Graphical representation of calculation of the mathematical average used to quantify cell activity

Plot of average current at 4.0 V_{Li} vs. eg-filling

Fig. S6: Catalyst-area specific activity of Perovskite:Vulcan carbon:Li₂O₂:Nafion[®] = 3:1:1:1 electrodes vs. reported oxide e_g -filling. Contrary to H₂O oxidation in aqueous 0.1 M KOH², no volcano trend is found between e_g -filling and perovskite activity during oxidation of Li₂O₂.


SEM images of pristine and charged Cr NP-catalyzed Li₂O₂-preloaded electrodes


Fig. S7: SEMs of Cr:VC:Li₂O₂:Nafion[®] = 0.66:1:1:1 electrodes catalyzed electrodes with preloaded Li₂O₂. (left): Pristine electrodes displaying Li₂O₂ and Cr nanoparticles (Cr NP) decorating carbon surfaces. (right): Similar electrode after charging at 3.9 V_{Li} contains no visible Li₂O₂ particles after 100% charging; instead holes corresponding to the ~350 nm Li₂O₂ are observed. Small Cr NP still liter the carbon surfaces post charging.

Assessment of parasitic oxidation in Cr NP-catalyzed electrodes

1- Electrochemical assessment

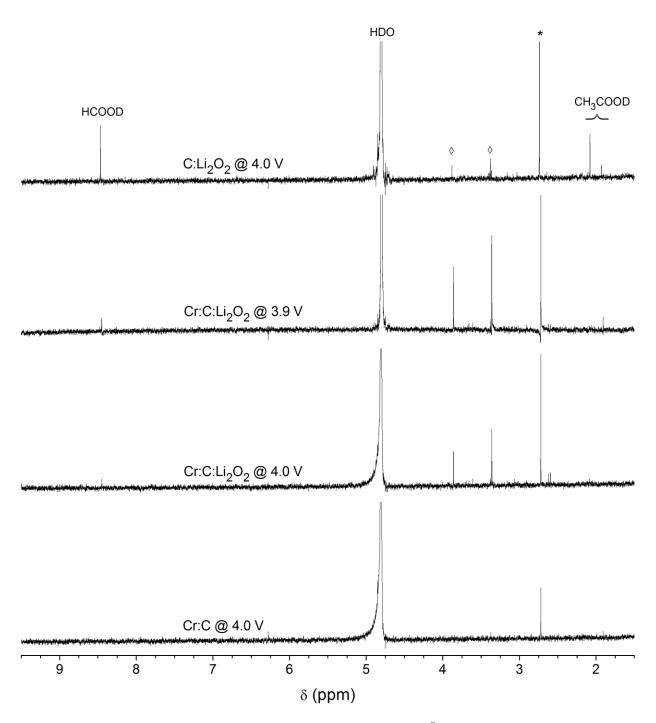
Fig. S8: Discharge and charge at 100 mA g^{-1}_{Carbon} under argon atmosphere of a Cr/C (Cr:C:Nafion[®] = 2:1:0.5). The output charge (< 18 mAh g^{-1}_{Carbon}) is well below the ~750 mAh g^{-1}_{Carbon} observed for the same electrode under oxygen atmosphere (Fig. 5 of main manuscript).

Fig. S9: (a) Potentiostatic charging profile of Cr:C:Li₂O₂:Nafion[®] = 0.66:1:1:1 compared to that of its background (Li₂O₂-free) at 4 V_{Li}. The small average current (~1 mA g⁻¹_{Carbon}) of the background compared to that of the Li₂O₂-preloaded electrode (~1000 mA g⁻¹_{Carbon}) indicates negligible parasitic electrolyte oxidation in presence of Cr NP. (b) Comparison of background oxidation currents at 4 V_{Li} in presence of Cr, Pt and Ru (Cr,Pt,Ru:C:Nafion[®] = 0.66:1:0.5) without Li₂O₂. The observed parasitic oxidation current is a factor of 10 higher on the surfaces of noble metal Pt and Ru.

2- Spectroscopic assessment

To investigate the extent of parasitic electrolyte decomposition accompanying the enhanced Li_2O_2 oxidation in presence of Cr NP, solid deposits on electrodes post-charging at 3.9 V_{Li} and 4.0 V_{Li} were probed using nuclear magnetic resonance (NMR) spectroscopy. A Bruker AVANCE 400 NMR spectrometer was used to collect all ¹H NMR data. Lithium formate (HCOOLi) and acetate (CH₃COOLi) are reported as the main decomposition products of ether solvents.^{3, 4} The experimental procedure used to probe these products is reported elsewhere,⁴ and is briefly described below:

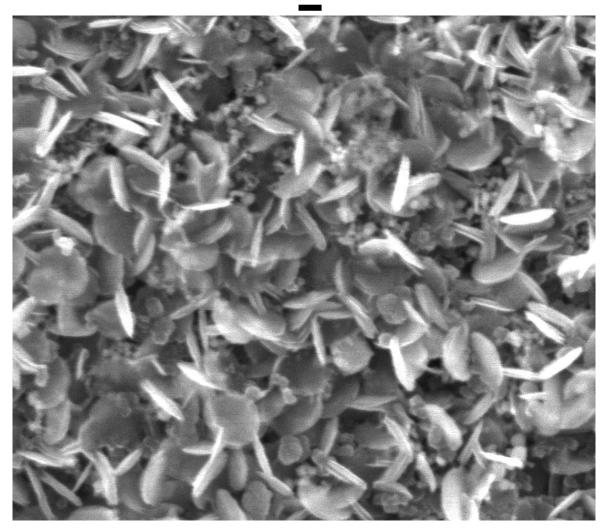
- C:Li₂O₂:Nafion[®] = 1:1:1, Cr:C:Li₂O₂:Nafion[®] = 0.66:1:1:1, and Cr:C:Nafion[®] = 0.66:1:1 electrodes are charged at either 3.9 V_{Li} or 4.0 V_{Li} . Representative charge profiles are shown in Fig. 3 of the main manuscript.
- All electrodes are triple washed with acetonitrile to selectively remove inorganic lithium salts such as LiClO₄ used in the electrolyte. Organic salts such as HCOOLi and CH₃COOLi do not dissolve in acetonitrile.
- Electrodes are then immersed in 0.65 mL D₂O for 4 hours to dissolve any organic salts from electrolyte decomposition.
- The D₂O wash is collected for ¹H NMR

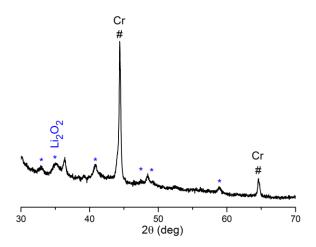

Assignment of NMR peaks for HCOOD (representing HCOOLi) and CH₃COOD (representing CH₃COOLi) are based on the works of Freunberger et al.³ and Black et al.⁴ The following results are gathered from the NMR spectra shown in Fig. S10 below:

Cr:C:Li₂O₂ at 3.9V : H NMR (400 MHz, D₂O) δ ppm 8.45 (s, 1H), 1.91 (s, 3H)

Cr:C:Li₂O₂ at 4V: ^{1}H NMR (400 MHz, D₂O) δ ppm 8.45 (s, 1H)

Cr:C at 4V: No peaks corresponding to HCOOLi or CH₃COOLi


It is clear that formation of HCOOLi and CH₃COOLi occurs irrespective of the presence or absence of Cr NP in all electrodes containing Li₂O₂. Comparison of spectral intensities of the HCOOD and CH₃COOD peaks between Cr NP electrodes and carbon-only electrodes suggests no enhanced electrolyte decomposition in presence of Cr NP. Background electrodes of Cr NP without Li₂O₂ charged at 4.0 V_{Li} show no electrolyte decomposition products, which confirms the relative benign effect of Cr NP on the dimethoxyethane electrolyte seen in Fig. S9.


Fig. S10: (top to bottom) NMR spectra of C:Li₂O₂:Nafion[®] = 1:1:1 charged at 4.0 V_{Li}, Cr:C:Li₂O₂:Nafion[®] = 0.66:1:1:1 charged at 3.9 V_{Li}, Cr:C:Li₂O₂:Nafion[®] = 0.66:1:1:1 charged at 4.0 V_{Li} and Cr:C:Nafion[®] = 0.66:1:1 polarized at 4.0 V_{Li}. Unidentified peaks at δ = 3.86 and 3.36 ppm (◊) appear tied to the presence of Li₂O₂ as they are absent from the Cr:C:Nafion[®] without Li₂O₂. These unidentified peaks were also noted in the work by Freunberger et al.³ The peak at δ = 2.72 (*) is tied to the presence of carbon as it is observed in all electrodes with and without chromium and was not observed in electrodes without carbon (spectrum not shown).

Discharge product in discharged Cr NP-catalyzed Li-O2 cells

100 nm

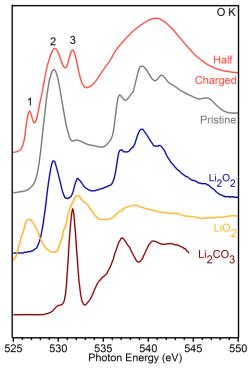


Fig. S11: SEMs of discharged Cr/C (Cr:C:Nafion[®] = 2:1:0.5) Li-O₂ electrode. ~200 nm particles of Li₂O₂ confirmed by XRD (Fig. S12) are visible and covering the carbon structure. Smaller ~40 nm point-particles are Cr NP.

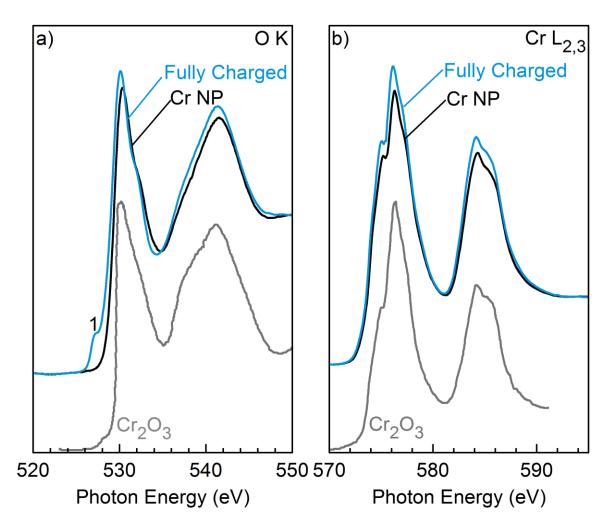


Fig. S12: Post-discharge XRD of Cr/C (Cr:C:Nafion[®] = 2:1:1) Li-O₂ electrode. The discharge product is confirmed to be crystalline Li_2O_2 .

X-ray absorption analysis of carbon-free Cr NP-catalyzed electrodes

Fig.S13: Comparison of O K-edge XANES spectra of the pristine and half-charged $Cr:Li_2O_2$ electrodes to reference spectra of Li_2CO_3 , $Li_2O_2^{16, 40}$ and LiO_2^{5} . Energies are calibrated to the spectral features of Li_2O_2 in the as-made $Cr:Li_2O_2$ electrode.

Fig. S14: Comparison of O K-edge XANES spectra of the as-purchased and fully-charged $Cr:Li_2O_2$ electrodes to reference spectra of Cr_2O_3 .^{6,7}

Table S1: Literature values for Li₂O₂ oxidation activities under various cell conditions

Catalyst	Electrolyte used	Rate (mA g	Rate (mA g ⁻¹ Li2O2)*	Rate (µA cm ⁻ ² Carbon)	Rate (µA cm ⁻ ² Cat)	Rate (µA cm ⁻² Carbon+Cat)	Charging voltage (V)	Cathode structure	
Pt/VC	0.1 M LiClO ₄ 1,2 Dimethoxyethane		70	0.070	0.114	0.043	~3.6	Li ₂ O ₂ -prefilled (VC:Catalyst:Li ₂ O ₂ = 1:0.66:1) ⁸	
Ru/VC				0.070	0.088	0.039	~3.6		
Au/VC		70		0.070	0.482	0.061	~4.2		
Vulcan Carbon (VC)				0.070	0.070	0.035	~4.1		
KB/Acid leached Na _{0.44} MnO ₂	1 M LiPF ₆ TEGDME			7.4	0.009	0.255	0.008	~3.8	1:0 11
KB/Pristine Na _{0.44} MnO ₂		70	14	0.009	0.384	0.008	~4.0	Li-O ₂ cell (KB:Catalyst = $1:0.4$) ⁹	
Ketjen black (KB)			41	0.009	0.009	0.008	~4.1		
KB/Lead ruthenate	1 M LiPF ₆ TEGDME	* //)	14	0.009	0.106	0.008	~4.0	Y: 0 II	
KB/Bismuth ruthenate			14	0.009	0.068	0.008	~4.0	Li-O ₂ cell (KB:Catalyst =	
Ketjen Carbon (KB)			27	0.009	0.009	0.004	~4.2	1:1) ¹⁰	
KB/ La _{1.7} Ca _{0.3} Ni _{0.75} Cu _{0.25} O ₄	1 M LiPF ₆ TEGDME	20	67	0.008	1.811	0.008	~3.6	Li_2O_2 -prefilled (KB:Catalyst: Li_2O_2 = 1:0.3:0.3) ¹¹	
Super P (No catalyst)	0.1M LiClO ₄ , DMF	70	54	0.113	0.113	0.113	~3.6	LiFePO ₄ -O ₂ cell ¹²	
Super P (No catalyst)	0.1M LiClO ₄ , DMSO	70	164	0.113	0.113	0.113	~4.1	Li-O ₂ cell ¹³	

Super P/Gold nano composite electrode	0.1M LiClO ₄ , DMSO	70	164	0.113	1.120	0.103	~3.8	Li-O ₂ cell (Super P:PTFE:Au = $8:1:1$) ¹³
Nanoporous Gold	0.1M LiClO ₄ , DMSO	500 mA/g _{Au}	1947	N/A	1.000	1.000	~3.5	Li-O ₂ cell ¹³

^{*} Normalized to the weight of Li_2O_2 (preloaded or electrochemically-formed) right before charging

Surface areas of catalyst particles

Table S2: SEM calculated particles size and surface areas of the perovskites investigated.

Oxide	$d_{v/a}$ (nm)	Surface Area (m ² /g _{ox})
BSCF	647.22	1.596
LaMnO ₃	574.53	1.821
LaNiO ₃	206.11	4.108
LaFeO ₃	454.05	1.981
LaCrO ₃	951.08	0.946

Extraction of the surface areas from SEM images was done following the same procedure detailed by Suntivich et al.² The following formula is employed:

$$A_s = \frac{6}{\rho \cdot d_{v/a}} \text{ with } d_{v/a} = \frac{\sum d^3}{\sum d^2}$$

Where d is the average diameter of particles approximated as spherical. d is calculated based on the measured surface area (using ImageJ image processing software, offered by NIH) of particles observed. The same procedure is used by Harding et al.⁸ in extracting the surface areas of Pt, Ru and Au in Pt/C, Ru/C, and Au/C catalysts.

In the case of Cr-nanoparticles and Cr_2O_3 , surface area was obtained using Brunauer–Emmett–Teller (BET) measurements using nitrogen adsorption/desorption. The measurement yielded a surface area of ~24 m²/g_{Cr NP} for Cr NP, in good agreement with the values of (20-30 m²/g_{Cr NP}) reported by the manufacturer (US Research Nanomaterials Inc.). The surface area of Cr_2O_3 was measured at ~20 m²/g_{Cr2O3}.

REFERENCES

- 1. J. Suntivich, H. A. Gasteiger, N. Yabuuchi, H. Nakanishi, J. B. Goodenough and Y. Shao-Horn, *Nat. Chem.*, 2011, **3**, 546-550.
- 2. J. Suntivich, K. J. May, H. A. Gasteiger, J. B. Goodenough and Y. Shao-Horn, *Science*, 2011, **334**, 1383-1385.
- 3. S. A. Freunberger, Y. Chen, N. E. Drewett, L. J. Hardwick, F. Bardé and P. G. Bruce, *Angew. Chem. Int. Ed.*, 2011, **50**, 8609-8613.
- 4. R. Black, S. H. Oh, J. H. Lee, T. Yim, B. Adams and L. F. Nazar, *J. Am. Chem. Soc.*, 2012, **134**, 2902-2905.
- 5. M. W. Ruckman, J. Chen, S. L. Qiu, P. Kuiper, M. Strongin and B. I. Dunlap, *Phys. Rev. Lett.*, 1991, **67**, 2533-2536.
- 6. T. Schedel-Niedrig, *Fresenius J. Anal. Chem.*, 1998, **361**, 680-682.
- 7. M. O. Figueiredo, A. C. dos Santos, M. J. Carmezim, M. Abbate, F. M. F. de Groot, H. Petersen and W. Braun, *Analyst*, 1994, **119**, 609-611.
- 8. J. R. Harding, Y. C. Lu, Y. Tsukada and Y. Shao-Horn, *Phys. Chem. Chem. Phys.*, 2012, **14**, 10540-10546.
- 9. J.-H. Lee, R. Black, G. Popov, E. Pomerantseva, F. Nan, G. A. Botton and L. F. Nazar, *Energy Environ. Sci.*, 2012, **5**, 9558-9565.
- 10. S. H. Oh and L. F. Nazar, *Adv. Energy Mater.*, 2012, **2**, 903-910.
- 11. K.-N. Jung, J.-I. Lee, W. B. Im, S. Yoon, K.-H. Shin and J.-W. Lee, *Chem. Commun.*, 2012, **48**, 9406-9408.
- 12. Y. Chen, S. A. Freunberger, Z. Peng, F. Bardé and P. G. Bruce, *J. Am. Chem. Soc.*, 2012, **134**, 7952-7957.
- 13. Z. Peng, S. A. Freunberger, Y. Chen and P. G. Bruce, *Science*, 2012, **337**, 563-566.