## **Supplementary Information:**

## Hydroxylation of silica nanoclusters $(SiO_2)_M(H_2O)_N$ M=4, 8, 16, 24: stability and structural trends

Kim E. Jelfs, <sup>*a*</sup> Edwin Flikkema<sup>*b*</sup> and Stefan T. Bromley<sup>*c*,*d*</sup>\*

<sup>a</sup> Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK;

<sup>b</sup> Institute of Mathematics and Physics, Penglais, Aberystwyth, Ceredigion, SY23 3BZ, UK;

<sup>c</sup> Department de Química Física & Institut de Química Teòrica i Computacional, Universitat de

Barcelona, C/ Martí i Franquès 1, E-08028 Barcelona, Spain;

<sup>c</sup> Institució Catalana de Recerca i Estudis Avançats (ICREA), E-08010 Barcelona, Spain. E-mail: s.bromley@ub.edu

1. Linear fits to the open data points in Figure 3.







2. Structures of the lowest energy  $R_{N/M}$ =0.5 cage-like clusters found for M=16 (left) and 24 (right).



3. Structures of the lowest energy  $(SiO_2)_4(H_2O)_N$  and  $(SiO_2)_8(H_2O)_N$  clusters found for  $R_{N/M} \ge 0.5$ .



 $(SiO_2)_4(H_2O)_2$ R<sub>N/M</sub>=0.5



(SiO<sub>2</sub>)<sub>4</sub>(H<sub>2</sub>O)<sub>3</sub> R<sub>N/M</sub>=0.75



(SiO<sub>2</sub>)<sub>4</sub>(H<sub>2</sub>O)<sub>4</sub> R<sub>N/M</sub>=1.0





 $(SiO_2)_8(H_2O)_4$ R<sub>N/M</sub>=0.5

(SiO<sub>2</sub>)<sub>8</sub>(H<sub>2</sub>O)<sub>5</sub> R<sub>N/M</sub>=0.625



(SiO<sub>2</sub>)<sub>8</sub>(H<sub>2</sub>O)<sub>6</sub> R<sub>N/M</sub>=0.75



(SiO<sub>2</sub>)<sub>8</sub>(H<sub>2</sub>O)<sub>7</sub> R<sub>N/M</sub>=0.875