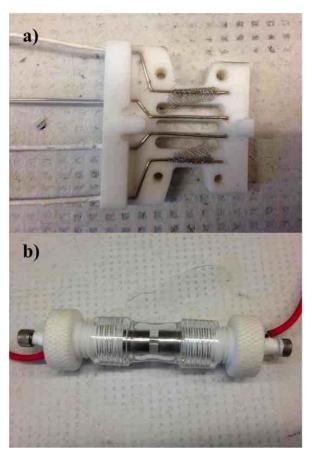

Dynamics of Benzimidazole Ethylphosphonate: A Solid-State NMR Study of Anhydrous Composite Proton-Conducting Electrolytes

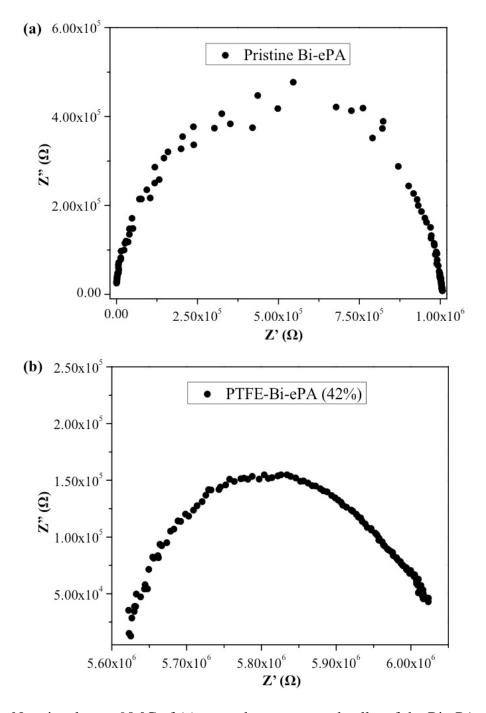
Z. Blossom Yan, Nicole E. De Almeida, Jason W. Traer, and Gillian R. Goward*

^{*}Department of Chemistry and Chemical Biology & Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario, Canada L8S 4M1

Supplementary Document



1. Differential scanning calorimetry data for pristine solid acid


Figure S1. Differential scanning calorimetry for Bi-ePA: T_m = 127 °C

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2013

2. Ionic conductivity analysis and calculation

Figure S2. The impedance spectroscopy cell configurations used in this study. (a) The fourprobe sample cell configuration with platinum electrodes. (b) Through-plane cell configuration with platinum electrodes.

Figure S3. Nyquist plots at 90 °C of (a) a powder-compressed pellet of the Bi-ePA pristine salt and (b) 42 % loading membrane-salt composite. A Nyquist plot has the complex impedance on the y-axis with the real impedance on the x-axis.

The resistance of the material, R_m , can be extracted using ZView® software from Scribner Associates by fitting the data with semi-circular functions, which is the diameter of the semicircle along Z', x-axis. The conductivity, σ , is defined as the inverse of resistivity, ρ .

$$\sigma = \frac{1}{\rho}$$
, and ρ is defined as $R \times \frac{A}{l}$,

where R is the resistance of the material, A is the cross-section area of the material, and l is the length of the material.

In the in-plane four-probe cell configuration, the conductivity is calculated by,

 $\sigma = \frac{d}{R_m}$, where *d* is the thickness of the powder-pressed pellet.

In the through-plane cell configuration, the conductivity is calculated by,

 $\sigma = \frac{l}{R_m \times A} = \frac{l}{R_m \times w \times d}$, where *w* is the width of the strip of the composite sample and *d* is the

thickness of the composite sample.