Supporting Information

Excited state electron transfer from aminopyrene to graphene: a combined experimental and theoretical study

Himadri Chakraborti^a, Kommula Bramhaiah^b, Neena Susan John^b, Suman Kalyan Pal^a*

^aSchool of Basic Sciences, Indian Institute of Technology Mandi, Mandi-175001, Himachal

Pradesh, India.

^bCentre for Soft Matter Research, Jalahalli, P.B. No.1329 Bangalore-560013, India.

*Corresponding Author: E-mail: suman@iitmandi.ac.in; Fax: (+91)1905 237924

Ground state optimized structures.

Figure S1. Ground state optimized structures of Pyrene and 1-Aminopyrene

(1-Ap).

Vibrational frequencies.

Freq		Infrared	#	1	Freq	Infrared
	102.34	0.7185		1	71,4856	7.7
	157.48	0.0000		2	107.882	0.0
	219.91	11.7742		3	190.557	0.8
	255.78	0.0000		4	203.352	16.5
	270.35	0.0000		5	261,681	0.0
	365.31	3.1845		6	287,652	9.1
	410.91	0.0000		7	316.12	2.9
	420.04	0.0000		8	395,642	1.8
	471.03	0.0000		9	425.607	0.9
	510.21	1.7998		10	431,228	4.0
	516.47	6.5343		11	464.174	7.0
	518.56	0.0000		12	477,989	3.2
	525.47	0.0000		13	500.032	1.7
	549.70	0.0000		14	511.333	0.0
	567.60	4.9891		15	525,111	14.1
	597.57	0.0000		16	531,971	2.2
	598.64	0.0000		17	559,968	1.48
	703.42	0.0000		18	577.564	2.16
	716.75	0.0209		19	609.03	4.9
	735.73	45.4445		20	627,544	118
	764 03	0.0000	1			

Pyrene

1-Aminopyrene

Figure S2. Calculated vibrational frequencies for Pyrene and 1-Aminopyrene.

Structural geometry of 1-Ap.

	1-AP Symbolic Z-I Charge = 1 N C C C C C C C C C C C C C	matrix: multiplici 1 3 3 5 5 6 7 7 8 9 9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ty = 2 81 82 83 84 85 86 89 0 810 811 2 812 813 813 815 815 815 816 817 817 818 819 0 813 813 815 815 822 823 815 824 825 827 827 827 827 827 827 827 827	1 2 3 4 5 6 7 8 9 0 111 123 2 2 3 4 6 7 8 0 111 14	A1 A2 A4 A4 A6 A6 A7 A8 A10 A12 A12 A12 A11 A12 A12 A12 A22 A22 A22	123456789101114455 6789101114455 67910213	D1 0 D2 0 D3 0 D4 0 D5 0 D7 0 D8 0 D10 0 D11 0 D13 0 D14 0 D15 0 D14 0 D15 0 D16 0 D17 0 D22 0 D24 0 D22 0 D24 0 D25 0		
Va B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B16 B17	Ariables: 1.37396 1.43029 1.43822 1.36827 1.43849 1.41002 1.39812 1.39824 1.41048 1.41048 1.41048 1.44021 1.36821 1.43625 1.43626 1.41066 1.38748 1.43264 1.43392 1.01265	B18 B19 B20 B21 B22 B23 B24 B25 B26 B27 A1 A2 A3 A4 A5 A6 A7 A8	1.0101 1.087 1.0882 1.0882 1.0883 1.0888 1.0888 1.0888 1.0888 1.0888 1.0888 1.0887 1.0877 1.09777 1.09777 1.09777 1.09777 1.09777 1.09777 1.09777 1.09777 1.	14 75 28 30 32 33 35 55 31 26 59 31 36 55 33 38 88	A9 A10 A11 A11 A11 A11 A11 A11 A11 A11 A11	0 1 2 3 4 4 5 5 6 6 7 7 8 9 9 0 1 2 3 3 4 5 5 6	122.11664 120.9007 121.46536 122.41968 121.41258 119.52038 119.52038 119.98855 123.03817 119.98855 123.03817 119.78924 120.26591 119.70058 120.15815 118.39314 120.00581 119.98819 -0.01447 179.98449 0. -179.99528 -180. 0.	D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 D21 D22 D23 D24 D23 D24 D25	0. -180. 179.99534 179.99534 179.98923 0. 0.00589 0.03591 -179.96261 -0.01427 -180. 0. -180. -180. -0.00883 5 -179.99646

Figure S3. Optimized structural geometry of 1-Ap in Cartesian

coordinates.

FESEM images.

Figure S4. Field emission scanning electron microscopic images of GO and rGO dispersions.

Raman spectra.

Figure S5. Raman spectra of GO and rGO dispersions.

Fluorescence decay.

Figure S6. Time-resolved fluorescence decay profile of rGO with excitation at 441 nm (solid curve is the fitting result).

Cyclic voltammetry.

Figure S7. Cyclic voltammogram of 1-Ap in water-THF

(99:1) mixed solvent.

Finding the S_1 state energy (E_{00}) for 1-Ap.

Figure S8. Normalized absorption and fluorescence spectra of 1-Ap showing the energy of the S_1 state (E_{00}).

Finding molecular weight of graphene.

Molecular weight of a circular graphene sheet can be estimated by covering all the carbon atoms by a circular arc with radius r (**Figure S9**).

Figure S9. Circular graphene sheet enclosed by a circle of radius r. ${}^{a}C_{rs} = Carbon resonance bond radius in graphene structure, ~ 0.71 (1.42/2) Å$

We can see from the above figure (S5) that the number of carbon atoms in a sheet varies with the square of the radius (r^2) of the sheet,

$$N \propto r^2$$
.

This implies that a 100 nm circular graphene sheet can contain 15×10^5 carbon atoms. Therefore, the sheet has a molecular weight of 18×10^6 gm.

Vertical transition energies of 1-Ap.

Few specific transitions of 1-Ap having reasonably high oscillator strengths obtained by TD-DFT along with the assignment of the contributions from different molecular orbitals are shown in Table I.

Compound	λ_{\max} (nm)	Oscillator strength	Assignment
1-Ap	378.61	0.4183	H ^a ->L ^b (76%), H-1->L+1 (5%).
	346.75	0.0550	H-1->L (12%), H->L+1 (78%), H-2->L (2%).
	311.30	0.0376	H->L+2 (88%), H-1->L (5%).
	276.61	0.2443	H-1->L (67%), H->L+1 (8%), H->L+2 (2%), H->L+3 (5%).
	258.10	0.0325	H-2->L (64%), H-1->L+1 (13%), H->L+3 (11%), H-3->L (3%).

Table I.	Vertical	transition	energies	for 1-Ap
----------	----------	------------	----------	----------

^aHighest occupied molecular orbital ^bLowest unoccupied molecular orbital