V. SUPPLEMENTARY MATERIAL

TABLE VI: Energy levels (cm⁻¹) of the 4*f* configuration of Ce³⁺ in 21 selected garnets referred to the 4*f*₁ 1 Γ_5 ground state, as calculated for the (CeO₈)¹³⁻ clusters embedded in a common cubic confinement potential.

	Garnet	$4f_2 \ 2\Gamma_5$	$4f_3 \ 3\Gamma_5$	$4f_4 \ 4\Gamma_5$	$4f_5 5\Gamma_5$	$4f_6 \ 6\Gamma_5$	$4f_7 \ 7\Gamma_5$
1	$\rm Lu_2CaMg_2Si_3O_{12}$	378	1068	2284	2527	2751	5879
			$A_3B'_2Si_3O_{12}$	garnets			
2	Pyrope	279	1029	2270	2438	2639	6063
3	Almandine	348	1079	2290	2491	2725	6003
4	Spessartine	401	1120	2306	2526	2804	5920
5	Grossular	486	1179	2334	2560	2968	5691
6	Andradite	498	1205	2327	2558	3029	5678
7	$Ca_3Sc_2Si_3O_{12}$	564	1288	2331	2614	3135	5701
			$A_3Al_5O_{12}$	garnets			
8	LuAG	82	863	2191	2286	2500	5788
9	YbAG	93	870	2212	2287	2508	5744
10	ErAG	127	876	2266	2293	2519	5637
11	YAG	144	899	2284	2301	2537	5654
12	GdAG	144	867	2290	2309	2517	5539
			$A_3Ga_5O_{12}$	garnets			
13	LuGG	331	1043	2123	2544	2734	5920
14	YbGG	233	1000	2142	2448	2679	5849
15	YGG	204	919	2159	2434	2601	5648
16	HoGG	193	916	2160	2422	2596	5657
17	DyGG	178	895	2165	2410	2575	5615
18	$\mathrm{Tb}\mathrm{G}\mathrm{G}$	169	873	2171	2406	2555	5559
19	GdGG	137	841	2186	2374	2522	5489
20	SmGG	126	840	2209	2356	2523	5421
21	NdGG	118	818	2235	2342	2502	5337

TABLE VII: Energy levels (cm^{-1}) of the 4f configuration of Ce^{3+} in 21 selected garnets referred
to the $4f_1 \ 1\Gamma_5$ ground state, as calculated for the $(\text{CeO}_8)^{13-}$ clusters embedded in the embedding
potentials of the undistorted garnets. Available experimental data are shown in parentheses.

	Garnet	$4f_2 \ 2\Gamma_5$	$4f_3 \ 3\Gamma_5$	$4f_4 \ 4\Gamma_5$	$4f_5 5\Gamma_5$	$4f_6 \ 6\Gamma_5$	$4f_7 \ 7\Gamma_5$
							1001
1	$Lu_2CaMg_2Si_3O_{12}$	413	744	2302	2433	2738	4391
			$A_3B'_2Si_3O_{12}$	garnets			
2	Pyrope	419	837	2166	2613	2662	5002
3	Almandine	330	760	2192	2534	2560	4782
4	Spessartine	260	692	2220	2440	2513	4574
5	Grossular	319	644	2325	2364	2597	4244
6	Andradite	383	702	2310	2404	2719	4227
7	$Ca_3Sc_2Si_3O_{12}$	440	785	2282	2457	2841	4199
			$A_3Al_5O_{12}$ g	garnets			
8	LuAG	269	809	2246	2362	2634	4710
9	YbAG	267	790	2264	2346	2625	4643
10	ErAG	293	764	2270	2377	2624	4511
11	YAG	300	754	2266	2387	2615	4508
12	GdAG	323	748	2268	2421	2634	4394
			$A_3Ga_5O_{12}$	garnets			
13	LuGG	547	1068	2151	2759	2889	4798
14	YbGG	448	972	2156	2654	2794	4691
15	YGG	347	880	2188	2545	2722	4478
16	HoGG	344	878	2187	2543	2719	4491
17	DyGG	325	859	2194	2521	2706	4442
18	$\mathrm{Tb}\mathrm{G}\mathrm{G}$	300	833	2206	2493	2686	4386
19	GdGG	268	792	2222	2451	2655	4296
		$(198)^{a}$		$(2145)^a$	$(2245)^{a}$	$(2403)^{a}$	$(3639)^{a}$
20	SmGG	235	746	2238	2408	2621	4192
21	NdGG	222	710	2267	2377	2600	4098

 a Reference 46.

	Garnet	$4f_2 \ 2\Gamma_5$	$4f_3 \ 3\Gamma_5$	$4f_4 \ 4\Gamma_5$	$4f_5 \ 5\Gamma_5$	$4f_6 \ 6\Gamma_5$	$4f_7 \ 7\Gamma_5$				
1	$\rm Lu_2CaMg_2Si_3O_{12}$	35	-324	18	-94	-13	-1488				
	$A_3B'_2Si_3O_{12}$ garnets										
2	Pyrope	140	-192	-104	175	23	-1061				
3	Almandine	-19	-320	-98	43	-16	-1221				
4	Spessartine	-141	-427	-86	-86	-291	-1346				
5	Grossular	-166	-535	-9	-196	-371	-1447				
6	Andradite	-115	-503	-17	-154	-311	-1450				
7	$Ca_3Sc_2Si_3O_{12}$	-124	-504	-49	-157	-294	-1503				
			$A_3Al_5O_{12}$ §	garnets							
8	LuAG	187	-54	56	75	134	-1078				
9	YbAG	174	-80	52	59	116	-1101				
10	ErAG	166	-112	4	83	105	-1126				
11	YAG	156	-144	-18	86	78	-1147				
12	GdAG	179	-119	-21	111	117	-1144				
			$A_3Ga_5O_{12}$	garnets							
13	LuGG	216	25	28	215	155	-1122				
14	YbGG	215	-28	14	207	116	-1158				
15	YGG	142	-40	29	111	121	-1170				
16	HoGG	151	-38	27	120	123	-1166				
17	DyGG	147	-37	29	111	130	-1173				
18	$\mathrm{Tb}\mathrm{G}\mathrm{G}$	131	-40	35	87	131	-1173				
19	GdGG	131	-49	36	77	133	-1193				
20	SmGG	109	-94	29	52	98	-1229				
21	NdGG	104	-108	32	35	97	-1239				

TABLE VIII: Unrelaxed host effect (cm⁻¹) on the energy levels of the 4f configuration of Ce³⁺ in 21 selected garnets referred to the $4f_1 \ 1\Gamma_5$ ground state.

TABLE IX: Energy levels (cm⁻¹) of the 5*d* configuration of Ce³⁺ in 21 selected garnets referred to the $4f_1 \ 1\Gamma_5$ ground state, as calculated for the (CeO₈)¹³⁻ clusters embedded in a common cubic confinement potential.

	Garnet	$5d_1 \ 8\Gamma_5$	$5d_2 \ 9\Gamma_5$	$5d_3 \ 10\Gamma_5$	$5d_4 \ 11\Gamma_5$	$5d_5 \ 12\Gamma_5$
1	LuaCaMgaSiaOta	25236	20007	50986	55799	58664
T	Eu2Oamg2013012	20200 A.J	20001 B' SiaO1a garn	ots	00122	00004
2	Pyrope	22745	28568	53691	57941	69119
2	Almandine	22140	20000	52501	56896	61003
ј Л	Spessartine	23301	29271 29971	51555	56311	50044
4 5	Grossular	24101	25571	40381	54856	56707
6	Andradito	25000	31578	49581	54623	55831
7	CasSasSirOrr	20214 26577	31378	40031	54025	55220
1	0a3002013012	20011		47324	54000	55250
0	ΤυΛC	24012	28703	53759	54510	60223
0		24913	20103	52407	54519	50868
9 10	I DAG	20144	20912	53407	04109 52501	09000 E07E1
10	Erag	23711	29589	52010	53501	58751
11	YAG	25680	29676	52354	53556	58900
12	GdAG	26340	30079	51856	52921	57584
		A ₃	Ga_5O_{12} garne	ts		
13	LuGG	25871	28446	51957	55223	60529
14	YbGG	25862	28712	52109	54184	60555
15	YGG	26636	29395	51597	53536	58468
16	HoGG	26607	29357	51691	53516	58589
17	DyGG	26741	29497	51621	53319	58177
18	$\mathrm{Tb}\mathrm{G}\mathrm{G}$	26981	29683	51427	53074	57567
19	GdGG	27174	29929	51299	52590	56963
20	SmGG	27414	30257	50875	51806	56496
21	NdGG	27723	30588	50458	51196	55568

TABLE X: Energy levels (cm^{-1}) of the 5 <i>d</i> configuration of Ce^{3+} in 21 selected garnets referred
to the $4f_1 \ 1\Gamma_5$ ground state, as calculated for the $(\text{CeO}_8)^{13-}$ clusters embedded in the embedding
potentials of the undistorted garnets. Available experimental data are shown in parentheses.

	Garnet	$5d_1 \ 8\Gamma_5$	$5d_2 \ 9\Gamma_5$	$5d_3 \ 10\Gamma_5$	$5d_4 \ 11\Gamma_5$	$5d_5 \ 12\Gamma_5$
1	$Lu_2CaMg_2Si_3O_{12}$	21719	31112	49946	52451	54904
		$(21300)^a$	$(32800)^a$			
		A_3 I	$B'_{2}Si_{3}O_{12}$ garne	ts		
2	Pyrope	22210	27952	52449	53309	58981
3	Almandine	22365	28626	51426	52392	57051
4	Spessartine	22710	29365	50405	51712	55932
5	Grossular	23873	31573	48378	51170	53217
6	Andradite	24092	31972	47693	51680	52861
7	$Ca_3Sc_2Si_3O_{12}$	24367	32349	46374	51516	52591
		$(22200)^{b}$				
		A_3	Al_5O_{12} garnets	8		
8	LuAG	22102	27807	50006	52423	54540
		$(22470)^{c}$	$(29410)^{c}$			
		$(21138)^d$	$(28233)^d$			
9	YbAG	22249	28199	49827	51966	54241
10	ErAG	22493	29052	49522	51114	53550
11	YAG	22523	29242	49673	50906	53835
		$(22000)^{e}$	$(29400)^{e}$	$(44000)^{e}$		
		$(20440)^{f}$	$(28800)^{f}$			
12	GdAG	23001	29789	49399	50540	53063
		A_3	Ga_5O_{12} garnet	s		
13	LuGG	24112	26367	47788	53183	54404
14	YbGG	24102	26852	47979	52367	54293
15	YGG	24446	27883	47786	51804	53308
		$(23800)^{e}$	$(28100)^{e}$			
16	HoGG	24416	27863	48023	51882	53519
17	DyGG	24497	28068	47926	51674	53149
18	$\mathrm{Tb}\mathrm{G}\mathrm{G}$	24627	28390	47975	51513	52969
19	GdGG	24773	28779	47872	51037	52421
		$(23500)^{g}$	$(28700)^{g}$			
20	SmGG	24977	29332	47690	50359	52105
21	NdGG	25145	29956	47656	49829	51643

 a Reference 9, excitation band maximum.

 $^b\mathrm{Reference}$ 10, excitation band maximum.

 $^c\mathrm{Reference}$ 54, excitation band maximum.

 $^d\mathrm{Reference}$ 54, zero-phonon line.

 $^e\mathrm{Reference}$ 1, excitation band maximum.

^fReference 8, zero-phonon line.

 g Reference 46, excitation band maximum.

TABLE XI: Energy levels (cm⁻¹) of the 5*d* configuration of Ce³⁺ in 21 selected garnets referred to the 5*d*₁ 8 Γ_5 state, as calculated for the (CeO₈)¹³⁻ clusters embedded in the embedding potentials of the undistorted garnets. Available experimental data are shown in parentheses.

	Garnet	$5d_1 \ 8\Gamma_5$	$5d_2 \ 9\Gamma_5$	$5d_3 \ 10\Gamma_5$	$5d_4 \ 11\Gamma_5$	$5d_5 \ 12\Gamma_5$
1	$Lu_2CaMg_2Si_3O_{12}$	0	9393	28227	30732	33185
			$(11500)^a$			
		A_3	$B'_{2}Si_{3}O_{12}$ garne	ets		
2	Pyrope	0	5742	30239	31098	36771
3	Almandine	0	6261	29061	30027	34685
4	Spessartine	0	6655	27695	29002	33223
5	Grossular	0	7700	24505	27297	29344
6	Andradite	0	7880	23602	27588	28770
7	$Ca_3Sc_2Si_3O_{12}$	0	7982	22007	27149	28224
		A	$_{3}\mathrm{Al}_{5}\mathrm{O}_{12}$ garnet	ts		
8	LuAG	0	5704	27904	30321	32438
			$(6940)^{b}$			
			$(7100)^{c}$			
9	YbAG	0	5950	27578	29716	31991
10	ErAG	0	6559	27029	28621	31057
11	YAG	0	6718	27150	28383	31312
			$(7470)^d$	$(22000)^d$		
			$(8360)^{e}$			
12	GdAG	0	6788	26398	27539	30062
		A_3	Ga_5O_{12} garne	ts		
13	LuGG	0	2256	23676	29071	30292
14	YbGG	0	2750	23877	28265	30192
15	YGG	0	3437	23340	27358	28862
			$(4300)^d$			
16	HoGG	0	3447	23608	27467	29103
17	DyGG	0	3571	23429	27177	28653
18	TbGG	0	3763	23348	26886	28342
19	GdGG	0	4007	23099	26264	27648
			$(5200)^{f}$			
20	SmGG	0	4356	22713	25383	27129
21	NdGG	0	4811	22511	24685	26498

^aReference 9, excitation band maximum.

 $^b\mathrm{Reference}$ 54, excitation band maximum.

 $^c\mathrm{Reference}$ 54, zero-phonon line.

^dReference 1, excitation band maximum.

 $^e\mathrm{Reference}$ 8, zero-phonon line.

 ${}^{f}\!\mathrm{Reference}$ 46, excitation band maximum.

	Garnet	$5d_1 8\Gamma_r$	$5d_{0}$ $9\Gamma_{r}$	$5d_2$ 10 Γ_r	$5d_{A}$ 11 Γ_{r}	$5d_r$ 12 Γ_r
	Garnet	541 61 5	042 01 5	543 101 5	04 111 5	5005 121 5
1	$Lu_2CaMg_2Si_3O_{12}$	-3517	1115	-1040	-3271	-3760
		A ₃ I	$B'_{2}Si_{3}O_{12}$ garn	ets		
2	Pyrope	-534	-616	-1173	-3932	-3131
3	Almandine	-1016	-645	-1164	-4504	-4042
4	Spessartine	-1392	-607	-1151	-4599	-4012
5	Grossular	-1792	158	-1003	-3686	-3579
6	Andradite	-2122	395	-938	-2944	-2970
7	$Ca_3Sc_2Si_3O_{12}$	-2210	485	-950	-2544	-2639
		A_3	Al_5O_{12} garner	ts		
8	LuAG	-2811	-896	-3746	-2096	-5682
9	YbAG	-2895	-773	-3579	-2193	-5627
10	ErAG	-3218	-537	-3093	-2387	-5201
11	YAG	-3157	-435	-2681	-2650	-5065
12	GdAG	-3339	-290	-2457	-2380	-4521
		A_3	Ga_5O_{12} garne	$^{ m ts}$		
13	LuGG	-1759	-2078	-4169	-2040	-6125
14	YbGG	-1760	-1861	-4130	-1817	-6262
15	YGG	-2191	-1513	-3811	-1732	-5160
16	HoGG	-2192	-1494	-3668	-1634	-5070
17	DyGG	-2244	-1429	-3695	-1645	-5028
18	TbGG	-2354	-1292	-3452	-1560	-4597
19	GdGG	-2401	-1150	-3427	-1553	-4542
20	SmGG	-2437	-925	-3185	-1447	-4391
21	NdGG	-2578	-632	-2803	-1366	-3925

TABLE XII: Unrelaxed host effect (cm⁻¹) on the energy levels of the 5*d* configuration of Ce³⁺ in 21 selected garnets referred to the $4f_1 \ 1\Gamma_5$ ground state.

Supplementary material figure captions

FIG. 8: Centroid energy component of the $4f \rightarrow 5d$ transition, $\Delta E_{\text{centroid}}(fd)$ (Eq. 2), of Ce³⁺ doped in 21 selected garnets. See Fig. 2 caption.

FIG. 9: Crystal field splitting component of the $4f_1 \rightarrow 5d_1$ transition, $\Delta E_{\text{LF}}(4f_1 \rightarrow 5d_1)$ (Eq. 3), of Ce³⁺ doped in 21 selected garnets. See Fig. 2 caption.

FIG. 10: Energy levels of the 4f configuration (referred to the $4f_1 \ 1\Gamma_5$ ground state) of Ce³⁺ in 21 selected garnets, as calculated for the $(CeO_8)^{13-}$ clusters embedded in a common cubic confinement potential. See Fig. 6 caption.

FIG. 11: Unrelaxed host effect on the energy levels of the 4f configuration (referred to the $4f_1 \ 1\Gamma_5$ ground state) of Ce³⁺ in 21 selected garnets. See Fig. 6 caption.

FIG. 12: Energy levels of the 5*d* configuration (referred to the 5*d*₁ $8\Gamma_5$ level) of Ce³⁺ in 21 selected garnets. as calculated for the (CeO₈)¹³⁻ clusters embedded in a common cubic confinement potential. See Fig. 7 caption.

FIG. 13: Unrelaxed host effect on the energy levels of the 5*d* configuration (referred to the 5*d*₁ 8 Γ_5 level) of Ce³⁺ in 21 selected garnets. See Fig. 7 caption.

FIG. 14: Energy levels of the 5*d* configuration (referred to the $4f_1 \ 1\Gamma_5$ ground state) of Ce³⁺ in 21 selected garnets, as calculated for the (CeO₈)¹³⁻ clusters embedded in the embedding potentials of the undistorted garnets. See Fig. 7 caption.

FIG. 15: Energy levels of the 5*d* configuration (referred to the $4f_1 \ 1\Gamma_5$ ground state) of Ce³⁺ in 21 selected garnets, as calculated for the $(CeO_8)^{13-}$ clusters embedded in a common cubic confinement potential. See Fig. 7 caption.

FIG. 16: Unrelaxed host effect on the energy levels of the 5*d* configuration (referred to the $4f_1 \ 1\Gamma_5$ ground state) of Ce³⁺ in 21 selected garnets. See Fig. 7 caption.

Figure 8. Seijo and Barandiarán

Figure 9. Seijo and Barandiarán

Figure 10. Seijo and Barandiarán

Figure 11. Seijo and Barandiarán

Figure 12. Seijo and Barandiarán

Figure 13. Seijo and Barandiarán

Figure 14. Seijo and Barandiarán

Figure 15. Seijo and Barandiarán

Figure 16. Seijo and Barandiarán